Soil cadmium (Cd) pollution is a serious environmental problem imperiling food safety and human health. The endophyte can improve the tolerance of to Cd stress. However, it is still unknown whether and how the endophyte helps host plants build up a specific bacterial community when challenged by CdCl. In this study, the responses of the structure and function of bacterial community and root exudates of E+ ( infected) and E- ( uninfected) plants to Cd stress were investigated. Analysis of bacterial community structure indicated that the rhizosphere bacterial community predominated over the root endosphere bacterial community in enhancing the resistance of CdCl in a host mediated by . E+ plant strengthened the interspecific cooperation of rhizosphere bacterial species. Moreover, the analysis of root exudates demonstrated and increased the contents of organic acids and amino acids under Cd stress, and most root exudates were significantly correlated with rhizosphere bacteria. These results suggested that employed a specific strategy to recruit distinct rhizosphere bacterial species and relevant functions by affecting root exudates to improve the tolerance of the host to Cd stress. This study provides a firm foundation for the potential application of symbionts in improving phytostabilization efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654189 | PMC |
http://dx.doi.org/10.3390/ijms232113094 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!