An apparent paradox exists between the evidence for spontaneous systemic T cell- mediated anti-tumor immune responses in cancer patients, observed particularly in their bone marrow, and local tumor growth in the periphery. This phenomenon, known as "concomitant immunity" suggests that the local tumor and its tumor microenvironment (TME) prevent systemic antitumor immunity to become effective. Oncolytic Newcastle disease virus (NDV), an agent with inherent anti-neoplastic and immune stimulatory properties, is capable of breaking therapy resistance and immunosuppression. This review updates latest information about immunosuppression by the TME and discusses mechanisms of how oncolytic viruses, in particular NDV, and cellular immunotherapy can counteract the immunosuppressive effect of the TME. With regard to cellular immunotherapy, the review presents pre-clinical studies of post-operative active-specific immunotherapy and of adoptive T cell-mediated therapy in immunocompetent mice. Memory T cell (MTC) transfer in tumor challenged T cell-deficient nu/nu mice demonstrates longevity and functionality of these cells. Graft-versus-leukemia (GvL) studies in mice demonstrate complete remission of late-stage disease including metastases and cachexia. T cell based immunotherapy studies with human cells in human tumor xenotransplanted NOD/SCID mice demonstrate superiority of bone marrow-derived as compared to blood-derived MTCs. Results from clinical studies presented include vaccination studies using two different types of NDV-modified cancer vaccine and a pilot adoptive T-cell mediated therapy study using re-activated bone marrow-derived cancer-reactive MTCs. As an example for what can be expected from clinical immunotherapy against tumors with an immunosuppressive TME, results from vaccination studies are presented from the aggressive brain tumor glioblastoma multiforme. The last decades of basic research in virology, oncology and immunology can be considered as a success story. Based on discoveries of these research areas, translational research and clinical studies have changed the way of treatment of cancer by introducing and including immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655431PMC
http://dx.doi.org/10.3390/ijms232113050DOI Listing

Publication Analysis

Top Keywords

cellular immunotherapy
12
tumor microenvironment
8
oncolytic newcastle
8
newcastle disease
8
disease virus
8
local tumor
8
immunosuppressive tme
8
mice demonstrate
8
bone marrow-derived
8
clinical studies
8

Similar Publications

Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.

View Article and Find Full Text PDF

Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.

View Article and Find Full Text PDF

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.

View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!