Mucoadhesive polymer patches are a promising alternative for prolonged and controlled delivery of topical corticosteroids (CS) to improve their biopharmaceutical properties (mainly increasing local bioavailability and reducing systemic toxicity). The main biopharmaceutical advantages of patches compared to traditional oral dosage forms are their excellent bioadhesive properties and their increased drug residence time, modified and unidirectional drug release, improved local bioavailability and safety profile, additional pain receptor protection, and patient friendliness. This review describes the main approaches that can be used for the pharmaceutical R&D of oromucosal patches with improved physicochemical, mechanical, and pharmacological properties. The review mainly focuses on ways to increase the bioadhesion of oromucosal patches and to modify drug release, as well as ways to improve local bioavailability and safety by developing unidirectional -release poly-layer patches. Various techniques for obtaining patches and their influence on the structure and properties of the resulting dosage forms are also presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657685 | PMC |
http://dx.doi.org/10.3390/ijms232112980 | DOI Listing |
Eur J Breast Health
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
Breast cancer remains one of the most prevalent malignancies among women globally. Despite advances in therapeutic options, the prognosis often remains challenging. Breast cancer typically originates in the epithelial lining of glandular tissue ducts (85%) or lobules (15%).
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
December 2024
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.
Multilayer paper-based cell culture, as an in vitro three-dimensional (3D) cell culture method, has been frequently used to research drug bioavailability, therapeutic efficacy, and dose-limiting toxicity in malignant tumors. This paper proposes a heterogenous multilayer paper stacking co-culture system to establish a model of natural killer (NK) cells moving through the endothelium layer and attacking tumor spheroids. This system consists of three layers: a bottom tumor-spheroid layer, a middle invasion layer, and a top endothelium layer.
View Article and Find Full Text PDFPathol Res Pract
December 2024
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Nanofibers are among the promising platforms for efficient delivery of drugs (both hydrophilic and hydrophobic) through harnessing polymers with different natures as their base. Hydrophobic low-solubility agents such as curcumin could be incorporated in various types of electrospun nanofibers for different aims in drug delivery, such as enhancing its solubility, making this agent sustained release with improved pharmacological efficacy. Through using this nanoplatform, curcumin may become more bioavailable and more efficcious in the field of cancer therapy as well as tissue engineering and wound healing for local delivery of this anti-inflammatory and antioxidant agent.
View Article and Find Full Text PDFChembiochem
December 2024
University of Shanghai for Science and Technology, School of Materials and Chemistry, CHINA.
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by pruritus and impaired skin barrier function. Advances in drug delivery systems have transformed AD treatment by enhancing drug stability, bioavailability, and targeted delivery. Drug delivery systems such as liposomes, hydrogels, and microneedles enable deeper skin penetration, prolonged drug retention, and controlled release, reducing side effects and treatment frequency.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
Liver cancer has become a major global health challenge due to its high incidence, high rate of late diagnosis and limited treatment options. Although there are many clinical treatments available for liver cancer, the cure rate is still very low, and now researchers have begun to explore new aspects of liver cancer treatment, and nanotechnology has shown great potential for improving diagnostic accuracy and therapeutic efficacy and is therefore a promising treatment option. In diagnosis, nanomaterials such as gold nanoparticles, magnetic nanoparticles, and silver nanoparticles can realize highly sensitive and specific detection of liver cancer biomarkers, supporting diagnosis and real-time monitoring of the disease process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!