Sarcopenia is an age-related geriatric syndrome characterized by the gradual loss of muscle mass and function. Low-magnitude high-frequency vibration (LMHFV) was shown to be beneficial to structural and functional outcomes of skeletal muscles, while magnesium (Mg) is a cofactor associated with better indices of skeletal muscle mass and strength. We hypothesized that LMHFV, Mg and their combinations could suppress inflammation and sarcopenic atrophy, promote myogenesis via PI3k/Akt/mTOR pathway in senescence-accelerated mouse P8 (SAMP8) mice and C2C12 myoblasts. Results showed that Mg treatment and LMHFV could significantly decrease inflammatory expression (C/EBPα and LYVE1) and modulate a CD206-positive M2 macrophage population at month four. Mg treatment also showed significant inhibitory effects on FOXO3, MuRF1 and MAFbx mRNA expression. Coapplication showed a synergistic effect on suppression of type I fiber atrophy, with significantly higher IGF-1, MyoD, MyoG mRNA (p < 0.05) and pAkt protein expression (p < 0.0001) during sarcopenia. In vitro inhibition of PI3K/Akt and mTOR abolished the enhancement effects on myotube formation and inhibited MRF mRNA and p85, Akt, pAkt and mTOR protein expressions. The present study demonstrated that the PI3K/Akt/mTOR pathway is the predominant regulatory mechanism through which LMHFV and Mg enhanced muscle regeneration and suppressed atrogene upregulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654727PMC
http://dx.doi.org/10.3390/ijms232112944DOI Listing

Publication Analysis

Top Keywords

muscle mass
8
pi3k/akt/mtor pathway
8
coapplication magnesium
4
magnesium supplementation
4
supplementation vibration
4
vibration modulate
4
modulate macrophage
4
macrophage polarization
4
polarization attenuate
4
attenuate sarcopenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!