The interplay between the mechanical properties of double-stranded and single-stranded DNA is a phenomenon that contributes to various genetic processes in which both types of DNA structures coexist. Highly stiff DNA duplexes can stretch single-stranded DNA (ssDNA) segments between the duplexes in a topologically constrained domain. To evaluate such an effect, we designed short DNA nanorings in which a DNA duplex with 160 bp is connected by a 30 nt single-stranded DNA segment. The stretching effect of the duplex in such a DNA construct can lead to the elongation of ssDNA, and this effect can be measured directly using atomic force microscopy (AFM) imaging. In AFM images of the nanorings, the ssDNA regions were identified, and the end-to-end distance of ssDNA was measured. The data revealed a stretching of the ssDNA segment with a median end-to-end distance which was 16% higher compared with the control. These data are in line with theoretical estimates of the stretching of ssDNA by the rigid DNA duplex holding the ssDNA segment within the nanoring construct. Time-lapse AFM data revealed substantial dynamics of the DNA rings, allowing for the formation of transient crossed nanoring formations with end-to-end distances as much as 30% larger than those of the longer-lived morphologies. The generated nanorings are an attractive model system for investigation of the effects of mechanical stretching of ssDNA on its biochemical properties, including interaction with proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655958 | PMC |
http://dx.doi.org/10.3390/ijms232112916 | DOI Listing |
Mamm Genome
January 2025
CNRS, INSERM, CELPHEDIA, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, PHENOMIN, France.
Genome editing, in particular the CRISPR/Cas9 system, is widely used to generate new animal models. However, the generation of mutations, such as conditional knock-out or knock-in, can remain complex and inefficient, in particular because of the difficulty to deliver the donor DNA (single or double stranded) into the nucleus of fertilized oocytes. The use of recombinant adeno-associated viruses (rAAV) as donor DNA is a rapidly developing approach that promises to improve the efficiency of creation of animal models.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.
Recently, the scale and frequency of harmful algae blooms (HABs) have gradually increased, posing a serious threat to human health, marine ecosystems and economic development. For early warning, a method is required that can quickly detect and monitor microalgae. It is proposed to use aptamer targeted to Prorocentrum minimum, along with exonuclease III (Exo III), gold nanoparticles, target single-stranded DNA and hairpin structure probe to construct a new method, i.
View Article and Find Full Text PDFAlternative Lengthening of Telomeres (ALT) is a homologous recombination-dependent telomere elongation mechanism utilized by at least 10-15% of all cancers. Here we identified that the DNA topoisomerase, TOP3A is enriched at the telomeres of ALT cells but not at the telomeres of telomerase-positive (Tel) cancer cells. We demonstrate that TOP3A stabilizes the shelterin protein TERF2 in ALT cancer cell lines but not in Tel cells and that long non-coding telomere transcribed RNA (TERRA) enrichment at telomeres depends upon TOP3A.
View Article and Find Full Text PDFHeliyon
January 2025
School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, India.
Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material's bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!