Missense mutations of leucine-rich repeat kinase 2 (LRRK2), including the G2019S mutant, are responsible for the pathogenesis of Parkinson's disease. In this work, structure-based virtual screening of a large chemical library was carried out to identify a number of novel inhibitors of the G2019S mutant of LRRK2, the biochemical potencies of which ranged from the low micromolar to the submicromolar level. The discovery of these potent inhibitors was made possible due to the modification of the original protein-ligand binding energy function in order to include an accurate ligand dehydration energy term. The results of extensive molecular docking simulations indicated that the newly identified inhibitors were bound to the ATP-binding site of the G2019S mutant of LRRK2 through the multiple hydrogen bonds with backbone amide groups in the hinge region as well as the hydrophobic interactions with the nonpolar residues in the P-loop, hinge region, and interdomain region. Among 18 inhibitors derived from virtual screening, 4-(2-amino-5-phenylpyrimidin-4-yl)benzene-1,3-diol (Inhibitor ) is most likely to serve as a new molecular scaffold to optimize the biochemical potency, because it revealed submicromolar inhibitory activity in spite of its low molecular weight (279.3 amu). Indeed, a highly potent inhibitor (Inhibitor ) of the G2019S mutant was derived via the structure-based de novo design using the structure of Inhibitor as the molecular core. The biochemical potency of Inhibitor surged to the nanomolar level due to the strengthening of hydrophobic interactions in the ATP-binding site, which were presumably caused by the substitutions of small nonpolar moieties. Due to the high biochemical potency against the G2019S mutant of LRRK2 and the putatively good physicochemical properties, Inhibitor is anticipated to serve as a new lead compound for the discovery of antiparkinsonian medicines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654793 | PMC |
http://dx.doi.org/10.3390/ijms232112825 | DOI Listing |
The Parkinson's disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis-Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a K value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell.
View Article and Find Full Text PDFBasal ganglia disease has been reported as a post-infection sequela of several viruses, with documentation of this phenomenon from the H1N1 Spanish flu to the recent COVID-19 (SARS-CoV-2) pandemic. SARS-CoV-2 infection leads to multisystem deficits, including those affecting the nervous system. Here, we investigated whether a SARS-CoV-2 infection alone increases the susceptibility to develop parkinsonian phenotypes in C57BL/6J mice expressing the human ACE2 receptor, or in addition to two well-known toxin exposures, MPTP and paraquat.
View Article and Find Full Text PDFCell Death Dis
October 2024
Department of Biology, University of Padova, Padova, PD, Italy.
P21 activated kinase 6 (PAK6) is a serine-threonine kinase with physiological expression enriched in the brain and overexpressed in a number of human tumors. While the role of PAK6 in cancer cells has been extensively investigated, the physiological function of the kinase in the context of brain cells is poorly understood. Our previous work uncovered a link between PAK6 and the Parkinson's disease (PD)-associated kinase LRRK2, with PAK6 controlling LRRK2 activity and subcellular localization via phosphorylation of 14-3-3 proteins.
View Article and Find Full Text PDFHum Mol Genet
November 2024
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States.
LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Faculty of Applied Sciences, Macao Polytechnic University, 999078, China. Electronic address:
Leucine-rich repeat kinase 2 (LRRK2) has been reported to be associated with familial and idiopathic Parkinson's disease (PD) risk and is a promising target for drug discovery against PD. To identify novel and effective LRRK2 inhibitors, an ensemble virtual screening strategy by combining fingerprint similarity, complex-based pharmacophore and structure-based molecular docking was proposed and applied. Using this strategy, we finally selected 25 compounds from ∼1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!