Autophagy is involved in the maintenance of cellular homeostasis and the removal of damaged proteins and organelles and is necessary to maintain cell metabolism in conditions of energy and nutrient deficiency. A decrease in autophagic activity plays an important role in age-related diseases. However, the metabolic response to autophagy modulation remains poorly understood. Here, we for the first time explored the effects of (1) autophagy activation by 48 h fasting, (2) inhibition by chloroquine (CQ) treatment, and (3) combined effects of fasting and CQ on the quantitative composition of metabolites in the blood serum of senescent-accelerated OXYS and control Wistar rats at the age of 4 months. By means of high-resolution H NMR spectroscopy, we identified the quantitative content of 55 serum metabolites, including amino acids, organic acids, antioxidants, osmolytes, glycosides, purine, and pyrimidine derivatives. Groups of 48 h fasting (induction of autophagy), CQ treatment (inhibition of autophagy), and combined effects (CQ + fasting) are clearly separated from control groups by principal component analysis. Fasting for 48 h led to significant changes in the serum metabolomic profile, primarily affecting metabolic pathways related to fatty acid metabolism, and led to metabolism of several amino acids. Under CQ treatment, the most affected metabolites were citrate, betaine, cytidine, proline, tryptophan, glutamate, and mannose. As shown by two-way ANOVA, for many metabolites the effects of autophagy modulation depend on the animal genotype, indicating a dysregulation of metabolome reactivity in OXYS rats. Thus, the metabolic responses to modulation of autophagy in OXYS rats and Wistar rats are different. Altered metabolites in OXYS rats may serve as potential biomarkers of the manifestation of the signs of accelerated aging. Metabolic signatures characteristic to fasting and CQ treatment revealed in this work might provide a better understanding of the connections between metabolism and autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658531PMC
http://dx.doi.org/10.3390/ijms232112720DOI Listing

Publication Analysis

Top Keywords

autophagy modulation
12
oxys rats
12
autophagy
9
blood serum
8
effects autophagy
8
combined effects
8
effects fasting
8
wistar rats
8
amino acids
8
fasting
6

Similar Publications

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

PINK1 modulates Prdx2 to reduce lipotoxicity-induced apoptosis and attenuate cardiac dysfunction in heart failure mice with a preserved ejection fraction.

Clin Transl Med

January 2025

Key Laboratory For Organ Failure Research, Ministry of Education of the People's Republic of China, Guangzhou, China.

Introduction: Heart failure with preserved ejection fraction (HFpEF) is a complex condition characterized by metabolic dysfunction and myocardial lipotoxicity. The roles of PTEN-induced kinase 1 (PINK1) and peroxiredoxin-2 (Prdx2) in HFpEF pathogenesis remain unclear.

Objective: This study aimed to investigate the interaction between PINK1 and Prdx2 to mitigate cardiac diastolic dysfunction in HFpEF.

View Article and Find Full Text PDF

Advances in Novel Targeted Therapies for Pancreatic Adenocarcinoma.

J Gastrointest Cancer

January 2025

Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada.

Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with limited therapeutic options and poor prognosis. Recent advances in targeted therapies have opened new avenues for intervention in PDAC, focusing on key genetic and molecular pathways that drive tumor progression.

Methods: In this review, we provide an overview on advances in novel targeted therapies in pancreatic adenocarcinoma.

View Article and Find Full Text PDF

ALKBH5 promotes autophagy and progression by mediating m6A methylation of lncRNA UBOX5-AS1 in endometriosis.

Am J Physiol Cell Physiol

January 2025

Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Long noncoding RNA (lncRNA) and N6-methyladenosine (m6A) methylation modification have recently been suggested as potential functional modulators in ovarian endometriosis, however, the function and mechanism of m6A-modified lncRNA in ovarian endometriosis remain poorly understood. In this study, we demonstrated that lncRNA UBOX5-AS1 expression was significantly elevated in ovarian endometriosis tissue and primary ectopic endometrial stromal cells. The expression of lncRNA UBOX5-AS1, which has m6A modifications, was highly positively correlated with demethylase Alk B homologous protein 5 (ALKBH5) expression and autophagy.

View Article and Find Full Text PDF

Renal ischemia-reperfusion injury (IRI) is a common clinical condition that currently lacks effective treatment options. Inhibitors targeting the sodium-glucose co-transporter-2 (SGLT-2), recognized for their role in managing hyperglycemia, have demonstrated efficacy in enhancing the health outcomes for diabetic patients grappling with chronic kidney disease. Nevertheless, the precise impact of SGLT-2 inhibitors on renal ischemia-reperfusion injury (IRI) and the corresponding transcriptomic alterations remain to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!