The Effects of Paroxetine on Benthic Microbial Food Web and Nitrogen Transformation in River Sediments.

Int J Environ Res Public Health

Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.

Published: November 2022

Paroxetine is a common pharmaceutical to treat depression and has been found to pose threats to aquatic organisms. However, little is known about the effects of paroxetine on the nutrient cycle in aquatic environments. Therefore, DNA metabarcoding is used in this study to analyze the effects of paroxetine on multi-trophic microorganisms and nitrogen transformation in river sediments. Although paroxetine has no significant effect on the diversity of microbenthos, changes in benthic nitrogen-converting bacteria are consistent with the change in the various forms of nitrogen in the sediment, indicating that paroxetine affects the nitrogen conversion process by affecting nitrogen-converting bacteria. In addition, it is found that paroxetine has the ability to influence nitrogen transformation in an indirect way by affecting the trophic transfer efficiency of higher trophic levels (meiofauna and protozoa, protozoa and protozoa), subsequently affecting the growth of nitrogen-converting bacteria through a top-down mechanism (i.e., predation).The results show that paroxetine affects nitrogen transformation directly by affecting nitrogen-converting bacteria and indirectly through top-down effects, emphasizing that the assessment of paroxetine's ecological risks should consider species within different trophic levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657768PMC
http://dx.doi.org/10.3390/ijerph192114602DOI Listing

Publication Analysis

Top Keywords

nitrogen transformation
16
nitrogen-converting bacteria
16
effects paroxetine
12
transformation river
8
river sediments
8
sediments paroxetine
8
paroxetine nitrogen
8
trophic levels
8
protozoa protozoa
8
paroxetine
7

Similar Publications

Synergistic production of nitrogen-rich hydrochar and solid biofuels via co-hydrothermal carbonization of microalgae and macroalgae: when nitrogen circularity matters.

Environ Res

January 2025

Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:

This work explores the synergies between N-rich (Chlorella pyrenoidosa) and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.

View Article and Find Full Text PDF

Indole-fused pyridines are an important motif in pharmaceuticals and functional molecules. A visible-light induced Ru(bpy)Cl·6HO catalyzed radical cascade sulfonylation/cyclization strategy for the synthesis of indole-fused pyridine derivatives was developed. Diverse indole-fused pyridines bearing different functional groups were obtained in moderate to good yields.

View Article and Find Full Text PDF

New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract.

Nat Prod Bioprospect

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.

Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared.

View Article and Find Full Text PDF

The combined effects of microplastics and their additives on mangrove system: From the sinks to the sources of carbon.

Sci Total Environ

January 2025

College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China. Electronic address:

Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs).

View Article and Find Full Text PDF

Dynamic transformation and leaching processes of nitrogen in a karst agricultural soil under simulated rainfall conditions.

J Contam Hydrol

December 2024

Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.

Frequent exchange of surface water and groundwater in karst agricultural areas results in soil nutrient loss during rainfall and consequent deterioration of the aquatic environment. To understand nitrogen (N) transformation and leaching processes from karst soil during rainfall events, two typical N fertilizers were added to karst soil and consequently investigated the nitrogenous species using soil column experiments system. The contents of various N forms in the soil and leachate were analyzed, and the net nitrification and the N leaching rates were calculated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!