Animal studies indicate deleterious effects of nitrate exposure on fecundity, but effects in humans are unknown, both for the prenatal and postnatal periods. We aimed to investigate if exposure to nitrate in maternal drinking water during the sensitive period of fetal life is associated with measures of fecundity in the adult sons. In a sub-analysis, the potential effects of nitrate exposure in adulthood were investigated. This cohort included 985 young adult men enrolled in The Fetal Programming of Semen Quality Cohort (FEPOS). Semen characteristics, testes volume and reproductive hormones were analyzed in relation to nitrate concentration in maternal drinking water, using a negative binomial regression model. The nitrate concentration in drinking water was obtained from monitoring data from Danish waterworks that were linked with the mothers' residential address during pregnancy. The median nitrate concentration in maternal drinking water was 2 mg/L. At these low exposure levels, which are far below the World Health Organization's (WHO) guideline value of 50 mg/L, we did not find indications of harmful effects of nitrate on the investigated measures of male fecundity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656746PMC
http://dx.doi.org/10.3390/ijerph192114428DOI Listing

Publication Analysis

Top Keywords

drinking water
20
maternal drinking
16
effects nitrate
12
nitrate concentration
12
nitrate
8
nitrate maternal
8
measures male
8
male fecundity
8
fecundity adult
8
adult sons
8

Similar Publications

Background: Considering that peripheral blood biomarkers are prognostic predictors for several human tumors, this study aimed to comparatively analyze the association of hematological alterations with the incidence of epithelial dysplasia (ED) and oral squamous cell carcinoma (OSCC) in male and female mice treated with 4-nitroquinoline-N-oxide (4NQO) and ethanol (EtOH).

Methods: 120 C57Bl/6J mice (60 males and 60 females) were allocated to four groups (n = 15). They were treated firstly either with 5 mg/mL propylene glycol (PPG) or 100 μg/mL 4NQO in the drinking water for 10 weeks, followed by sterilized water (HO) or 8% EtOH (v/v) for 15 weeks, as follows: PPG/HO, PPG/EtOH, 4NQO/HO, and 4NQO/EtOH (CEUA-UFU, #020/21).

View Article and Find Full Text PDF

Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.

View Article and Find Full Text PDF

Disturbance in sleep and activity rhythms are significant health risks associated with alcohol use during adolescence. Many investigators support the theory of a reciprocal relationship between disrupted circadian rhythms, sleep patterns, and alcohol usage. However, in human studies it is difficult to disentangle other factors (i.

View Article and Find Full Text PDF

Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.

View Article and Find Full Text PDF

Synergistic enhancement in ultra-trace thallium(I) removal using the titanium dioxide/biochar composite.

J Environ Manage

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:

Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!