Changes in Microeukaryotic Communities in the Grand Canal of China in Response to Floods.

Int J Environ Res Public Health

College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, China.

Published: October 2022

Floods are frequent natural disasters and could have serious impacts on aquatic environments. Eukaryotic communities in artificial canals influenced by floods remain largely unexplored. This study investigated the spatiotemporal variabilities among eukaryotes in response to floods in the Grand Canal, China. Generally, 781,078 sequence reads were obtained from 18S rRNA gene sequencing, with 304,721 and 476,357 sequence reads detected before and after flooding, respectively. Sediment samples collected after the floods exhibited a higher degree of richness and biodiversity but lower evenness than those before the floods. The eukaryotic communities changed from Fungi-dominated before floods to Stramenopile-dominated after floods. The spatial turnover of various species was the main contributor to the longitudinal construction of eukaryotes both before the floods ( = 0.7054) and after the floods ( = 0.6858). Some eukaryotic groups responded strongly to floods and might pose unpredictable risks to human health and environmental health. For example, Pezizomycetes, Catenulida, Glomeromycetes, Ellipura, etc. disappeared after the floods. Conversely, , Synurale, Hibberdiales, , Diptera, and Rhinosporidium were all frequently detected after the floods, but not prior to the floods. Functional analyses revealed amino acid metabolism, carbohydrate metabolism, translation, and energy metabolism as the main metabolic pathways, predicting great potential for these processes in the Grand Canal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655333PMC
http://dx.doi.org/10.3390/ijerph192113948DOI Listing

Publication Analysis

Top Keywords

floods
14
grand canal
12
canal china
8
response floods
8
eukaryotic communities
8
sequence reads
8
changes microeukaryotic
4
microeukaryotic communities
4
communities grand
4
china response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!