Effects of Strength Training on BDNF in Healthy Young Adults.

Int J Environ Res Public Health

Department of Sport, Institute of Physical Education, Kazimierz Wielki University in Bydgoszcz, 85-604 Bydgoszcz, Poland.

Published: October 2022

The physical improvements from strength and resistance training have been known for decades, but the cognitive benefits of this type of activity are not as well-known. The aim of this review article is to provide a summary of studies presenting the effects of strength and resistance training on BDNF in healthy young adults. A systematic search of various electronic databases (PubMed, Web of Science, Science Direct and Google Scholar) was conducted in September 2022. Studies that examined associations between strength training and BDNF in healthy young adults aged 18-30 years were included. The final sample included 10 studies published between 2009 and 2020. The results of this literature review are inconclusive. Based on the results of the 10 studies, there is no clear answer as to whether strength training has positive effects on BDNF in healthy young adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9658702PMC
http://dx.doi.org/10.3390/ijerph192113795DOI Listing

Publication Analysis

Top Keywords

bdnf healthy
16
healthy young
16
young adults
16
strength training
12
training bdnf
12
effects strength
8
strength resistance
8
resistance training
8
training
5
bdnf
4

Similar Publications

Objectives: Research on neurobehavioral abnormalities in neonates of mothers with subclinical hypothyroidism (SCH) is limited. The link between umbilical cord blood brain-derived neurotrophic factor (BDNF) levels and neurobehavioral outcomes in neonates has not been explored. This study investigates the correlation between alterations in umbilical cord blood BDNF levels and early neurobehavioral abnormalities in neonates born to pregnant women with SCH.

View Article and Find Full Text PDF

Neurons derived from induced pluripotent stem cells (h-iPSC-Ns) provide an invaluable model for studying the physiological aspects of human neuronal development under healthy and pathological conditions. However, multiple studies have demonstrated that h-iPSC-Ns exhibit a high degree of functional and epigenetic diversity. Due to the imprecise characterization and significant variation among the currently available maturation protocols, it is essential to establish a set of criteria to standardize models and accurately characterize and define the developmental properties of human neurons derived from iPSCs.

View Article and Find Full Text PDF

Peripheral blood age-sensitive immune markers in multiple sclerosis: relation to sex, cytomegalovirus status, and treatment.

EBioMedicine

January 2025

Department of Neurosciences, Université de Montréal, Montréal, H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada; Multiple Sclerosis Clinic of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, H2X 0C1, Canada. Electronic address:

Background: Immunosenescence is accelerated by chronic infectious and autoimmune diseases and could contribute to the pathobiology of multiple sclerosis (MS). How MS and disease-modifying therapies (DMTs) impact age-sensitive immune biomarkers is only partially understood.

Methods: We analyzed 771 serum samples from 147 healthy controls and 289 people with MS (PwMS) by multiplex immunoassays.

View Article and Find Full Text PDF

Background: Studies suggest that obesity predisposes individuals to developing cognitive dysfunction and an increased risk of dementia, but the nature of the relationship remains largely unexplored for better prognostic predictors.

Purpose: This study, the first of its kind in Indian participants with obesity, was intended to explore the use of quantification of different neurocognitive indices with increasing body mass index (BMI) among middle-aged participants with obesity. Additionally, machine-learning models were used to analyse the predictive performance of BMI for different cognitive functions.

View Article and Find Full Text PDF

Background: Klotho and neurotrophic factors, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF), have been shown to play a role in cognitive functions. However, these molecules have not been investigated in bipolar disorder simultaneously to assess the interactions among them and their relationships with cognitive functions. This study investigated the relationships among cognitive function, klotho, and neurotrophic factors in patients with bipolar disorder in the remission period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!