Pleurotomarioidea represents a truly isolated and basally diverging lineage in Vetigastropoda (Mollusca: Gastropoda) whose fossil record can date back to the late Cambrian, thus providing rare insights into the evolutionary history of molluscs. Here, we sequenced and assembled the complete mitochondrial genome of one representative species from Pleurotomarioidea- (Schepman, 1879)-of which the mitogenome is 15,795 bp in length, including 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The nucleotide composition was biased toward AT, and A + T content reached 65.2%. was recovered as sister to all other living vetigastropods according to mitogenome-based phylogenetic analysis. The mitochondrial gene order was consistent with major vetigastropods and the hypothetical ancestral gastropoda, suggesting the deep conservation of mitogenome arrangement in Vetigastropoda.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9690427PMC
http://dx.doi.org/10.3390/genes13112061DOI Listing

Publication Analysis

Top Keywords

complete mitochondrial
8
mitochondrial genome
8
vetigastropoda mollusca
8
mollusca gastropoda
8
rna genes
8
genome living
4
living fossil
4
fossil vetigastropoda
4
gastropoda pleurotomarioidea
4
pleurotomarioidea represents
4

Similar Publications

Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens.

Viruses

November 2024

Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA.

Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny.

View Article and Find Full Text PDF

The honeybee plays a crucial role as a pollinator, contributing significantly to biodiversity and supporting ecological processes [...

View Article and Find Full Text PDF

Using next-generation sequencing data, the complete mitogenomes of six species from the genus were assembled. This study explores the mitochondrial genomes of species, among them the five species from the complex, comparing them with each other and with other species from Dolichoderinae subfamily to understand their evolutionary relationships and evolution. mitochondrial genomes contain the typical set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and the A + T-rich control region.

View Article and Find Full Text PDF

Seventeen species of the -group of (Hymenoptera: Aphelinidae) are reviewed worldwide, including three new species, and five previously described species in China. The -group was defined by a combination of characters: head and body dark with parts of metasoma pale; fore wing with a complete row of setae inside the linea calva, or also only with a few setae in the angle between the linea and marginal vein; legs with mesocoxae, metacoxae and metatibia dark, metafemur pale. In this paper, three new species, Wang & Huang, , Wang & Huang, and Wang & Huang, , are described and illustrated, with notes on one species, Hopper & Woolley, new to China.

View Article and Find Full Text PDF

Ithonidae (moth lacewings) are an enigmatic, small family of the insect order Neuroptera (lacewings). Its phylogenetic position within Neuroptera and internal subfamily relationships remain unresolved. In this study, the complete mitochondrial genome (mitogenome) of Tillyard, 1916 representing the first mitogenome of Ithoninae, as well as the complete mitogenome of Liu, Li and Yang, 2018, were newly reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!