The aim of this study was to determine the breed boundary of the Hungarian Short-haired Vizsla (HSV) dog breed. Seventy registered purebred HSV dogs were genotyped on approximately 145,000 SNPs. Principal Component Analysis (PCA) and Admixture analysis certified that they belong to the same population. The outer point of the breed demarcation was a single Hungarian Wire-haired Vizsla (HWV) individual, which was the closest animal genetically to the HSV population in the PCA analysis. Three programs were used for the breed assignment calculations, including the widely used GeneClass2.0 software and two additional approaches developed here: the 'PCA-distance' and 'IBS-central' methods. Both new methods calculate a single number that represents how closely a dog fits into the actual reference population. The former approach calculates this number based on the PCA distances from the median of HSV animals. The latter calculates it from identity by state (IBS) data, measuring the distance from a central animal that is the best representative of the breed. Having no mixed-breed dogs with known HSV genome proportion, admixture animals were simulated by using data of HSV and HWV individuals to calibrate the inclusion/exclusion probabilities for the assignment. The numbers generated from these relatively simple calculations can be used by breeders and clubs to keep their populations under genetic supervision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9690546 | PMC |
http://dx.doi.org/10.3390/genes13112022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!