At present, plant-based simulated meat is attracting more and more attention as a meat substitute. This study discusses the possibility of partial substitution of rice bran (RB) for soybean protein isolate (SPI) in preparing plant-based simulated meat. RB was added to SPI at 0%, 5%, 10%, 15%, and 20% to prepare RB-SPI plant-based simulated meat by the high moisture extrusion technique. RB-SPI plant-based simulated meat revealed greater polyphenol content and preferable antioxidant capacity (DPPH radical scavenging capacity, ABTS scavenging ability, and FRAP antioxidant capacity) compared to SPI plant-based simulated meat. The aromatic amino acids (tryptophan and tyrosine) of RB-SPI plant-based simulated meats tend to be masked first, and then the hydrophobic groups are exposed as RB content increases and the polarity of the surrounding environment increases due to the change in the disulfide conformation of RB-SPI plant-based simulated meats from a stable gauche-gauche-gauche conformation to a trans-gauche-trans conformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657750PMC
http://dx.doi.org/10.3390/foods11213529DOI Listing

Publication Analysis

Top Keywords

plant-based simulated
32
simulated meat
24
rb-spi plant-based
16
antioxidant capacity
12
rice bran
8
plant-based
8
simulated
8
simulated meats
8
meat
7
investigation rice
4

Similar Publications

Background/objectives: Agricultural systems face increasing global pressure to address sustainability challenges, particularly regarding land use and environmental protection. In Romania, where traditional diets are heavily dependent on animal-based products, optimizing land use is critical. This study investigates the potential of plant-based diets to reduce agricultural land use, examining scenarios of partial and complete replacement of animal protein with plant protein sources (soy, peas, and potatoes).

View Article and Find Full Text PDF

Risk ranking of mycotoxins in plant-based meat and dairy alternatives under protein transition scenarios.

Food Res Int

January 2025

Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.

While reducing the consumption of animal-source foods is recommended for planetary and human health, potential emerging food safety risks associated with the transition to dietary patterns featuring plant-based meat (PBMA) and dairy alternatives (PBDA) remain unexplored. We assessed the exposure to mycotoxins and ranked the associated health risks related to the consumption of PBMA and PBDA. We simulated diets by replacing animal-source proteins with their plant-based alternatives.

View Article and Find Full Text PDF

Date seed polysaccharides were utilized to synthesize selenium nanoparticles (MPS-NP) through a redox reaction involving sodium selenite and ascorbic acid. Characterization of MPS-NP showed a uniform, amorphous, spherical shape with a particle size of 89.2 nm, remaining stable for 42 days.

View Article and Find Full Text PDF

The rare zoonotic Borna disease virus (BDV) causes fatal neurological disease in various animals, with a high mortality rate exceeding 90% in central Europe. However, unlike most viruses, it establishes persistent infections within the host cell nucleus, hindering treatment. As successful BDV treatments remain elusive, the researchers turned to a computational approach, utilizing molecular docking, ADME/T, post-docking MMGBSA, MD simulation, DCCM, and PCA to identify promising phytochemical drug candidates targeting the BDV Nucleoprotein (PDB ID: 1N93).

View Article and Find Full Text PDF

Soy protein isolate (SPI) possesses potential gelling properties, making it suitable for gel-based applications. However, the gel network stability and mechanical properties of SPI are relatively poor and can be improved through modifications or by combining it with other polymers, such as Konjac Glucomannan (KGM). Combining SPI with KGM can overcome the poor gel network stability and mechanical properties of SPI, but it reduces the water-absorbing capacity of the gel network after drying, which affects the quality characteristics of plant-based protein rehydrated foods and limits the economic feasibility of soy protein foods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!