This study aimed to compare tilapia fish cake drying and sterilization conditions (105, 115, and 121 °C) on the quality of the cakes. The impacts of volatile flavor substances, the chroma value, quality and structure characteristics, microscopic structure, and the types and content of volatile flavor substances were also analyzed. The results showed that after drying and sterilization, the L* value, W value and delta-E value of fish cakes decreased significantly from 77.12 to 64.77, 66.21 to 52.57, 10.46 to 24.50, respectively. However, a* value and b* value increased significantly from 0.30 to 6.97 and 24.85 to 30.89, respectively. The elasticity, hardness, and chewiness increased significantly with the drying process but decreased significantly with the increased sterilization temperature. Scanning electron microscopy results showed that the internal pores of the fish cakes became smaller, and the tissue structure was closer after drying. Gas chromatography-ion mobile spectrometry analysis identified a total of 36 volatile flavor compounds. Among these, ketones comprised the largest content, aldehydes represented the largest variety, and all volatile compounds contributed significantly to the flavor of fish cake. PCA results and nearest-neighbor fingerprint analysis showed that there were obvious differences in volatile flavor compounds between different treatments. In summary, this study conducted a detailed comparative analysis of the quality and flavor of fish cakes subjected to different processing methods. These findings contribute suggestions for sterilization temperatures in industrial production processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655066PMC
http://dx.doi.org/10.3390/foods11213321DOI Listing

Publication Analysis

Top Keywords

volatile flavor
16
fish cake
12
fish cakes
12
processing methods
8
quality flavor
8
drying sterilization
8
flavor substances
8
flavor compounds
8
flavor fish
8
flavor
7

Similar Publications

The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.

View Article and Find Full Text PDF

, a special economic aquaculture species in China, is valued highly for its medicinal and nutritional benefits. However, the muscle of farmed exhibits a strong off-flavor, resulting in poor flavor quality. To enhance the flavor quality of the meat, this study examined the volatile compounds in muscle by establishing identification methods for these volatile odor compounds and comparing the differences between the two aquaculture modes.

View Article and Find Full Text PDF

This study aim is to elucidate the relationship between the microbial community dynamics and the production of volatile flavor compounds during the fermentation process of bacterial-type i. Using high-throughput sequencing (HTS) and headspace solid-phase microextraction, gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to investigate microbial diversity and volatile compound profiles at different fermentation stages. Spearman correlation analysis was employed to identify potential associations between microbial genera and flavor compounds.

View Article and Find Full Text PDF

In this study, raw milk was collected from three different grades of pastures and processed by pasteurization, blending and ultra-high temperature sterilization (UHT) in a factory production line with a feed size of 10 tons. Additionally, all samples (from raw milk to UHT milk samples) were analyzed by -nose and GC-MS. Key flavor compounds such as 2-heptanone, hexanal, nonanal, 3-methyl-butanal, and dimethyl sulfide were found.

View Article and Find Full Text PDF

Characterization of volatile compounds profiles and identification of key volatile and odor-active compounds in 40 sweetpotato ( L.) varieties.

Food Chem X

January 2025

Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China.

Sweetpotato with different flesh colors exhibits significant differences in flavor. Nevertheless, research on the identification of the key aromatic compounds in sweetpotato is scarce. Therefore, 40 primary sweetpotato varieties with different flesh colors were analyzed by HS-SPME/GC-MS to characterize the volatile compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!