Hypoxia stabilizes the transcription factor HIF-1α, which promotes the transcription of many genes essential to adapt to reduced oxygen levels. Besides proline hydroxylation, expression of HIF-1α is also regulated by a range of other posttranslational modifications including phosphorylation by cAMP-dependent protein kinase A (PKA), which stabilizes HIF-1α. We recently demonstrated that MAGED2 is required for cAMP generation under hypoxia and proposed that this regulation may explain the transient nature of antenatal Bartter syndrome (aBS) due to mutations. Consequently, we sought to determine whether hypoxic induction of HIF-1α requires also MAGED2. In HEK293 and HeLa cells, MAGED2 knock-down impaired maximal induction of HIF-1α under physical hypoxia as evidenced by time-course experiments, which showed a signification reduction of HIF-1α upon MAGED2 depletion. Similarly, using cobalt chloride to induce HIF-1α, MAGED2 depletion impaired its appropriate induction. Given the known effect of the cAMP/PKA pathway on the hypoxic induction of HIF-1α, we sought to rescue impaired HIF-1α induction with isoproterenol and forskolin acting upstream and downstream of Gαs, respectively. Importantly, while forskolin induced HIF-1α above control levels in MAGED2-depleted cells, isoproterenol had no effect. To further delineate which PKA subtype is involved, we analyzed the effect of two PKA inhibitors and identified that PKA type II regulates HIF-1α. Interestingly, MAGED2 mRNA and protein were also increased under hypoxia by a cAMP mimetic. Moreover, MAGED2 protein expression also required HIF-1α. Thus, our data provide evidence for reciprocal regulation of MAGED2 and HIF-1α under hypoxia, revealing therefore a new regulatory mechanism that may further explain the transient nature of aBS caused by MAGED2 mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655371PMC
http://dx.doi.org/10.3390/cells11213424DOI Listing

Publication Analysis

Top Keywords

hif-1α
14
induction hif-1α
12
maged2
10
reciprocal regulation
8
regulation maged2
8
maged2 hif-1α
8
pka type
8
explain transient
8
transient nature
8
hypoxic induction
8

Similar Publications

Down to size: Exploring the influence of plastic particle Dimensions on physiological and nervous responses in early-stage zebrafish.

Environ Pollut

June 2024

Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium.

The chorion is the first protective barrier set to prevent numerous pollutants from damaging the developing embryo. However, depending on their size, some nanoplastics (NPs) can pass through this barrier and reach the embryo, while all microplastics (MPs) remain on the outside. This study brings a straight approach to compare MPs and NPs, and assess their direct and indirect effects on zebrafish embryos and larvae.

View Article and Find Full Text PDF

Specific cyprinid HIF isoforms contribute to cellular mitochondrial regulation.

Sci Rep

October 2020

College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.

Hypoxia-inducible factor 1 (HIF-1) functions as a master regulator of the cellular response to hypoxic stress. Two HIF-1α paralogs, HIF-1αA and HIF-1αB, were generated in euteleosts by the specific, third round of genome duplication, but one paralog was later lost in most families with the exception of cyprinid fish. How these duplicates function in mitochondrial regulation and whether their preservation contributes to the hypoxia tolerance demonstrated by cyprinid fish in freshwater environments is not clear.

View Article and Find Full Text PDF
Article Synopsis
  • Heat hardening in fish refers to the ability to increase thermal tolerance after exposure to high temperatures, helping them adapt to extreme environments.
  • The study focused on zebrafish lacking specific hypoxia-inducible factors (Hif-1), hypothesizing that these fish would show reduced thermal tolerance and diminished heat hardening.
  • Contrary to expectations, both Hif-1 knockout and wild-type zebrafish showed similar thermal tolerance and heat hardening abilities, indicating that hypoxia tolerance and thermal tolerance are not functionally linked.
View Article and Find Full Text PDF

During development, hematopoietic stem cells (HSCs) derive from specialized endothelial cells (ECs) called hemogenic endothelium (HE) via a process called endothelial-to-hematopoietic transition (EHT). Hypoxia-inducible factor-1α (HIF-1α) has been reported to positively modulate EHT in vivo, but current data indicate the existence of other regulators of this process. Here we show that in zebrafish, Hif-2α also positively modulates HSC formation.

View Article and Find Full Text PDF

Macrophages are known to interact with endothelial cells during developmental and pathological angiogenesis but the molecular mechanisms modulating these interactions remain unclear. Here, we show a role for the Hif-1α transcription factor in this cellular communication. We generated hif-1aa;hif-1ab double mutants in zebrafish, hereafter referred to as hif-1α mutants, and find that they exhibit impaired macrophage mobilization from the aorta-gonad-mesonephros (AGM) region as well as angiogenic defects and defective vascular repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!