Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657655 | PMC |
http://dx.doi.org/10.3390/cells11213380 | DOI Listing |
J Immunol
March 2025
Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
Alveolar macrophages (AMs) are lung-resident myeloid cells and airway sentinels for inhaled pathogens and environmental particles. While AMs can be highly inflammatory in response to respiratory viruses, they do not mount proinflammatory responses to all airborne pathogens. For example, we previously showed that AMs fail to mount a robust proinflammatory response to Mycobacterium tuberculosis.
View Article and Find Full Text PDFInt J Implant Dent
March 2025
Department of Prosthodontics, Propaedeutics and Dental Materials, Christian-Albrechts University at Kiel, Arnold-Heller-Strasse 16, Kiel, Germany.
Purpose: This study assessed the impact of the buccal bone on hard and soft tissues in submerged and non-submerged immediate implants using a minipig model.
Methods: Sixty-five titanium implants (Camlog Progressive Line) were placed in four minipigs immediately after tooth extraction. All non-submerged (NSM) implants received a mechanically induced buccal bone defect (NSM-BD), whereas the submerged group (SM) was classified as defective (SM-BD) and intact (SM-BI).
J Craniofac Surg
March 2025
Michael E. DeBakey Department of Surgery, Division of Plastic Surgery, Baylor College of Medicine.
Introduction: Traditionally, alveolar bone grafting (ABG) uses bone from the iliac crest for repair. Harvesting this graft has been associated with significant donor site pain. Local anesthetic is a useful adjunct to alleviate postoperative opioid requirements.
View Article and Find Full Text PDFClin Exp Dent Res
February 2025
Department of Periodontics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Background: Peri-implantitis represents a significant challenge in dental implantology, characterized by inflammatory reactions around osseointegrated dental implants that lead to progressive alveolar bone loss.
Objectives: To generate a scoping review that evaluates the efficacy of implantoplasty and Er:YAG laser therapies in managing peri-implantitis by synthesizing recent evidence on their impact on key clinical parameters-including probing depth reduction, bleeding on probing improvement, and marginal bone level stabilization-and to explore the potential synergistic benefits of combining these modalities for enhanced treatment outcomes.
Material And Methods: A comprehensive search was conducted in PubMed, EMBASE, the Cochrane Library, and Web of Science for studies published from January 2018 to the present.
J Dent Res
March 2025
Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore. Center to Advance Chronic Pain Research, Baltimore, MD, USA.
Multiple sensory afferents, including mechanosensitive and nociceptive nerves, are projected to the periodontium. Peptidergic afferents expressing transient receptor potential vanilloid 1 (TRPV1), a receptor for capsaicin, mediate pain caused by orthodontic forces. However, their role in orthodontic force-induced alveolar bone remodeling is poorly understood as is the contribution of mechanosensitive ion channels such as Piezo2 in nociceptive nerves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!