Spatial Prediction of Current and Future Flood Susceptibility: Examining the Implications of Changing Climates on Flood Susceptibility Using Machine Learning Models.

Entropy (Basel)

Laboratory of Environmental Geosimulation (LEDGE), Department of Geography, University of Montreal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada.

Published: November 2022

The main aim of this study was to predict current and future flood susceptibility under three climate change scenarios of RCP2.6 (i.e., optimistic), RCP4.5 (i.e., business as usual), and RCP8.5 (i.e., pessimistic) employing four machine learning models, including Gradient Boosting Machine (GBM), Random Forest (RF), Multilayer Perceptron Neural Network (MLP-NN), and Naïve Bayes (NB). The study was conducted for two watersheds in Canada, namely Lower Nicola River, BC and Loup, QC. Three statistical metrics were used to validate the models: Receiver Operating Characteristic Curve, Figure of Merit, and F1-score. Findings indicated that the RF model had the highest accuracy in providing the flood susceptibility maps (FSMs). Moreover, the provided FSMs indicated that flooding is more likely to occur in the Lower Nicola River watershed than the Loup watershed. Following the RCP4.5 scenario, the area percentages of the flood susceptibility classes in the Loup watershed in 2050 and 2080 have changed by the following percentages from the year 2020 and 2050, respectively: Very Low = -1.68%, Low = -5.82%, Moderate = +6.19%, High = +0.71%, and Very High = +0.6% and Very Low = -1.61%, Low = +2.98%, Moderate = -3.49%, High = +1.29%, and Very High = +0.83%. Likewise, in the Lower Nicola River watershed, the changes between the years 2020 and 2050 and between the years 2050 and 2080 were: Very Low = -0.38%, Low = -0.81%, Moderate = -0.95%, High = +1.72%, and Very High = +0.42% and Very Low = -1.31%, Low = -1.35%, Moderate = -1.81%, High = +2.37%, and Very High = +2.1%, respectively. The impact of climate changes on future flood-prone places revealed that the regions designated as highly and very highly susceptible to flooding, grow in the forecasts for both watersheds. The main contribution of this study lies in the novel insights it provides concerning the flood susceptibility of watersheds in British Columbia and Quebec over time and under various climate change scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689156PMC
http://dx.doi.org/10.3390/e24111630DOI Listing

Publication Analysis

Top Keywords

flood susceptibility
24
lower nicola
12
nicola river
12
current future
8
future flood
8
machine learning
8
learning models
8
climate change
8
change scenarios
8
river watershed
8

Similar Publications

Integrating a novel algorithm in assessing the impact of floods on the genetic diversity of a high commercial value fish (Cyprinidae: Spinibarbus sp.) in Lang Son province of Vietnam.

Zoology (Jena)

January 2025

Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam. Electronic address:

Floods, which occur when the amount of precipitation surpasses the capacity of an area to drain it adequately, have detrimental consequences on the survival and future generations of fishes. However, few works have reported the prediction of this natural phenomenon in a relation to certain fish species, especially in fast-flowing rivers. In the specific context of the northern mountainous provinces of Vietnam, where the Spinibarbus sp.

View Article and Find Full Text PDF

In recent decades, the global climate has changed mainly due to human-induced causes and realizing their manifestations in the forms of extreme events such as droughts, floods, heat stress, and variability in rainfall. Arid and semi-arid ecosystems are sensitive to changes in climate variability, including the Borana zone. This study was therefore initiated to assess how vulnerable pastoral and agro-pastoral livelihoods are to climate change, as well as to estimate the effects, and pinpoint potential response measures that could be implemented in the study area.

View Article and Find Full Text PDF

An open-source geodatabase and its associate WebGIS platform (CONNECTOSED) were developed to collect and utilize data for the Sediment Flow Connectivity Index (SfCI) for the Apulia region of southern Italy. Maps depicting sediment mobility and connectivity across the hydrographic basins of the Apulia region were generated and stored in the geodatabase. This geodatabase is organized into folders containing data in TIFF, shapefile, Jpeg and Pdf formats, including input variables (digital elevation model, land cover map, rainfall map, and soil units dataset for each hydrographic basin), classification graphs (ranking of variable values), dimensionless index maps (slope, ruggedness, rainfall, land cover, and soil stability) and key products (maps of sediment mobility, SfCI, and applied SfCI).

View Article and Find Full Text PDF

Soil erosion susceptibility maps and raster dataset for the hydrological basins of North Africa.

Sci Data

January 2025

University of Southern California, Viterbi School of Engineering, 3737 Watt Way, Powell Hall of Engineering, Los Angeles, CA, 90089, USA.

Soil erosion in North Africa modulates agricultural and urban developments as well as the impacts of flash floods. Existing investigations and associated datasets are mainly performed in localized urban areas, often representing a limited part of a watershed. The above compromises the implementation of mitigation measures for this vast area under accentuating extremes and continuous hydroclimatic fluctuations.

View Article and Find Full Text PDF

Interpretable flash flood susceptibility mapping in Yarlung Tsangpo River Basin using H2O Auto-ML.

Sci Rep

January 2025

Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), Beijing, 100101, China.

Flash flood susceptibility mapping is essential for identifying areas prone to flooding events and aiding decision-makers in formulating effective prevention measures. This study aims to evaluate the flash flood susceptibility in the Yarlung Tsangpo River Basin (YTRB) using multiple machine learning (ML) models facilitated by the H2O automated ML platform. The best-performing model was used to generate a flash flood susceptibility map, and its interpretability was analyzed using the Shapley Additive Explanations (SHAP) tree interpretation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!