Deep neural networks have been successfully applied in the field of image recognition and object detection, and the recognition results are close to or even superior to those from human beings. A deep neural network takes the activation function as the basic unit. It is inferior to the spiking neural network, which takes the spiking neuron model as the basic unit in the aspect of biological interpretability. The spiking neural network is considered as the third-generation artificial neural network, which is event-driven and has low power consumption. It modulates the process of nerve cells from receiving a stimulus to firing spikes. However, it is difficult to train spiking neural network directly due to the non-differentiable spiking neurons. In particular, it is impossible to train a spiking neural network using the back-propagation algorithm directly. Therefore, the application scenarios of spiking neural network are not as extensive as deep neural network, and a spiking neural network is mostly used in simple image classification tasks. This paper proposed a spiking neural network method for the field of object detection based on medical images using the method of converting a deep neural network to spiking neural network. The detection framework relies on the YOLO structure and uses the feature pyramid structure to obtain the multi-scale features of the image. By fusing the high resolution of low-level features and the strong semantic information of high-level features, the detection precision of the network is improved. The proposed method is applied to detect the location and classification of breast lesions with ultrasound and X-ray datasets, and the results are 90.67% and 92.81%, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689387 | PMC |
http://dx.doi.org/10.3390/e24111543 | DOI Listing |
Radiol Med
January 2025
Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.
Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.
NPJ Digit Med
January 2025
Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neurology, Peking University First Hospital, Beijing, People's Republic of China.
Persistent Postural-Perceptual Dizziness (PPPD) is a common cause of chronic vestibular syndrome. Although previous studies have identified central abnormalities in PPPD, the specific neural circuits and the alterations in brain network topological properties, and their association with dizziness and postural instability in PPPD remain unclear. This study includes 30 PPPD patients and 30 healthy controls.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
Mechanical ventilation is the process through which breathing support is provided to patients who face inconvenience during respiration. During the pandemic, many people were suffering from lung disorders, which elevated the demand for mechanical ventilators. The handling of mechanical ventilators is to be done under the assistance of trained professionals and demands the selection of ideal parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!