Head and neck cancer has great regional anatomical complexity, as it can develop in different structures, exhibiting diverse tumour manifestations and high intratumoural heterogeneity, which is highly related to resistance to treatment, progression, the appearance of metastases, and tumour recurrences. Radiomics has the potential to address these obstacles by extracting quantitative, measurable, and extractable features from the region of interest in medical images. Medical imaging is a common source of information in clinical practice, presenting a potential alternative to biopsy, as it allows the extraction of a large number of features that, although not visible to the naked eye, may be relevant for tumour characterisation. Taking advantage of machine learning techniques, the set of features extracted when associated with biological parameters can be used for diagnosis, prognosis, and predictive accuracy valuable for clinical decision-making. Therefore, the main goal of this contribution was to determine to what extent the features extracted from Computed Tomography (CT) are related to cancer prognosis, namely Locoregional Recurrences (LRs), the development of Distant Metastases (DMs), and Overall Survival (OS). Through the set of tumour characteristics, predictive models were developed using machine learning techniques. The tumour was described by radiomic features, extracted from images, and by the clinical data of the patient. The performance of the models demonstrated that the most successful algorithm was XGBoost, and the inclusion of the patients' clinical data was an asset for cancer prognosis. Under these conditions, models were created that can reliably predict the LR, DM, and OS status, with the area under the ROC curve (AUC) values equal to 0.74, 0.84, and 0.91, respectively. In summary, the promising results obtained show the potential of radiomics, once the considered cancer prognosis can, in fact, be expressed through CT scans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689406PMC
http://dx.doi.org/10.3390/diagnostics12112733DOI Listing

Publication Analysis

Top Keywords

features extracted
12
cancer prognosis
12
head neck
8
neck cancer
8
machine learning
8
learning techniques
8
clinical data
8
cancer
5
tumour
5
features
5

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.

Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.

View Article and Find Full Text PDF

Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.

Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.

View Article and Find Full Text PDF

Lightweight Retinal Layer Segmentation With Global Reasoning.

IEEE Trans Instrum Meas

May 2024

School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China.

Automatic retinal layer segmentation with medical images, such as optical coherence tomography (OCT) images, serves as an important tool for diagnosing ophthalmic diseases. However, it is challenging to achieve accurate segmentation due to low contrast and blood flow noises presented in the images. In addition, the algorithm should be light-weight to be deployed for practical clinical applications.

View Article and Find Full Text PDF

Hippocampal Functional Radiomic Features for Identification of the Cognitively Impaired Patients from Low-Back-Related Pain: A Prospective Machine Learning Study.

J Pain Res

January 2025

Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.

Purpose: To investigate whether functional radiomic features in bilateral hippocampi can identify the cognitively impaired patients from low-back-related leg pain (LBLP).

Patients And Methods: For this retrospective study, a total of 95 clinically definite LBLP patients (40 cognitively impaired patients and 45 cognitively preserved patients) were included, and all patients underwent functional MRI and clinical assessments. After calculating the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC) and degree centrality (DC) imaging, the radiomic features (n = 819) of bilateral hippocampi were extracted from these images, respectively.

View Article and Find Full Text PDF

Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!