Despite their low prevalence, brain tumors are among the most lethal cancers. They are extremely difficult to diagnose, monitor and treat. Conventional anti-cancer strategies such as radio- and chemotherapy have largely failed, and to date, the development of even a single effective therapeutic strategy against central nervous system (CNS) tumors has remained elusive. There are several factors responsible for this. Brain cancers are a heterogeneous group of diseases with variable origins, biochemical properties and degrees of invasiveness. High-grade gliomas are amongst the most metastatic and invasive cancers, which is another reason for therapeutic failure in their case. Moreover, crossing the blood brain and the blood brain tumor barriers has been a significant hindrance in the development of efficient CNS therapeutics. Cancer nanomedicine, which encompasses the application of nanotechnology for diagnosis, monitoring and therapy of cancers, is a rapidly evolving field of translational medicine. Nanoformulations, because of their extreme versatility and manipulative potential, are emerging candidates for tumor targeting, penetration and treatment in the brain. Moreover, suitable nanocarriers can be commissioned for theranostics, a combinatorial personalized approach for simultaneous imaging and therapy. This review first details the recent advances in novel bioengineering techniques that provide promising avenues for circumventing the hurdles of delivering the diagnostic/therapeutic agent to the CNS. The authors then describe in detail the tremendous potential of utilizing nanotechnology, particularly nano-theranostics for brain cancer imaging and therapy, and outline the different categories of recently developed next-generation smart nanoformulations that have exceptional potential for making a breakthrough in clinical neuro-oncology therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655255 | PMC |
http://dx.doi.org/10.3390/cancers14215389 | DOI Listing |
Discov Nano
December 2024
Bapumiya Sirajoddin Patel Arts, Commerce and Science College, Pimpalgaon Kale, Jalgaon Jamod Dist, Buldhana, Maharashtra, India.
The integration of nanotechnology in agriculture offers a transformative approach to improving crop yields, resource efficiency, and ecological sustainability. This review highlights the application of functional NM, such as nano-formulated agrochemicals, nanosensors, and slow-release fertilizers, which enhance the effectiveness of fertilizers and pesticides while minimizing environmental impacts. By leveraging the unique properties of NM, agricultural practices can achieve better nutrient absorption, reduced chemical runoff, and improved water conservation.
View Article and Find Full Text PDFBiochem Pharmacol
November 2024
Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, United Kingdom. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide, mainly due to its high heterogeneity, resistance to therapy and late diagnosis, with a 5-year survival rate of less than 10%. This dismal prognosis has promoted strategies to develop more effective treatments. Nanoparticle-based strategies have emerged, in the last decades, as a great opportunity because they can enhance drug delivery and promote controlled release, presenting lower side effects than conventional therapeutic regimens.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China.
Photothermal therapy (PTT) is a promising technology that can achieve the thermal ablation of tumors and induce immunogenic cell death (ICD). However, relying solely on the antitumor immune responses caused by PTT-induced ICD is insufficient to suppress tumor metastasis and recurrence effectively. Fortunately, multifunctional nanoformulation-based synergistic photothermal immunotherapy can eliminate primary and metastatic tumors and inhibit tumor recurrence for a long time.
View Article and Find Full Text PDFSci Rep
October 2024
Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Chemical Engineering, Northeastern University, Boston, USA.
J Mater Chem B
November 2024
Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
Although chemotherapy with magnetic nanocarriers has witnessed significant advancement in the field of cancer treatment, multimodal diagnosis and combinatorial therapy using a single nanoplatform will have much better efficacy in achieving superior results. Herein, we constructed a smart theranostic system by combining pH-sensitive tartaric acid-stabilized FeO magnetic nanocarriers (TMNCs) with SPECT imaging and a chemotherapeutic agent for image-guided chemo-hyperthermia therapy. The carboxyl-enriched exteriors of TMNCs provided sites for the conjugation of a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and radiolabeling (Ce).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!