Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The oxidative stress facing fish during intensive production brings about diseases and mortalities that negatively influence their performance. Along with that, the increased awareness of omega-3 polyunsaturated fatty acids (omega-3-PUFAs) health benefits has been triggered the introduction of alternative additives in aqua feed that cause not only modulation in fish immune response but also fortification of their fillet. In this context, the role of microalgae mix (NSS) containing Nannochloropsis oculate and Schizochytrium and Spirulina species, which were enriched with bioactive molecules, especially EPA and DHA, was assessed on Nile tilapia's performance, fillet antioxidant stability, immune response, and disease resistance. Varying levels of NSS (0.75, 1.5, and 3%) were added to Nile tilapia's diet for 12 weeks and then a challenge of fish with virulent Aeromonas hydrophila (A. hydrophila) was carried out. Results showed that groups fed NSS, especially at higher levels, showed an improved WG and FCR, which corresponded with enhanced digestive enzymes' activities. Higher T-AOC was detected in muscle tissues of NSS. fed fish with remarkable reduction in ROS, HO, and MDA contents, which came in parallel with upregulation of GSH-Px, CAT, and SOD genes. Notably, the contents of EPA and DHA in fillet were significantly increased with increasing the NSS levels. The mean log counts of pathogenic Vibrio and Staphylococcus species were reduced, and conversely, the populations of beneficial Lactobacillus and Bacillus species were increased more eminent after supplementation of NSS. and NSS.. Moreover, regulation of the immune response (lysozyme, IgM, ACH50, NO, and MPO), upregulation of , , and , and downregulation of , , ,and were observed following dietary higher NSS levels. After challenge, reduction in A. hydrophila counts was more prominent, especially in NSS. supplemented group. Taken together, the current study encourages the incorporation of such microalgae mix in Nile tilapia's diet for targeting maximum performance, superior fillet quality, and protection against A. hydrophila.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686914 | PMC |
http://dx.doi.org/10.3390/antiox11112181 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!