Peroxidation of vegetable oils represents a major problem for the food and biodiesel industries, and it is greatly accelerated by oil degree of unsaturation and by temperature increase. Phenols represent the most common additives used to counteract oil peroxidation, however clear structure-activity relationships at high temperatures are not available. We report, herein, a kinetic study of O consumption during spontaneous peroxidation of sunflower oil at 130 °C in the presence of 18 antioxidants belonging to the main families of natural and synthetic phenols, including α-tocopherol, alkylphenols (BHT, BHA), hydroquinones (TBHD), catechols (quercetin, catechin) and gallates. Results show that TBHQ provide the best protection in terms of induction period () duration and O consumption rate. EPR spectroscopy demonstrated that the inhibition activity is negatively correlated to the stability of the phenoxyl radical of the antioxidant (A), suggesting that chain propagation with linoleate (RH) moieties A + RH → AH + R decreases the efficacy of those antioxidants forming persistent A radicals. These results provide important information to optimize the antioxidant activity of phenols and of novel phenol-based materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686879 | PMC |
http://dx.doi.org/10.3390/antiox11112142 | DOI Listing |
Sci Data
January 2025
Institute of Crop Science, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China.
The sunflower (Helianthus annuus L.), belonging to the Asteraceae family, is the world's fourth most important oil crop. Sunflower cultivars are categorized into oilseed and confectionery types.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Instituto de Biotecnología, UEDD INTA CONICET, Buenos Aires 1686, Argentina.
Leaf senescence in plants is the last stage of leaf development and is characterized by a decline in photosynthetic activity, an active degeneration of cellular structures, and the recycling of accumulated nutrients to areas of active growth, such as buds, young leaves, flowers, fruits, and seeds. This process holds economic significance as it can impact yield, influencing the plant's ability to maintain an active photosynthetic system during prolonged periods, especially during the grain filling stage, which affects plant weight and oil content. It can be associated with different stresses or environmental conditions, manifesting itself widely in the context of climate change and limiting yield, especially in crops of agronomic relevance.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean oil, cottonseed oil, palm oil, palm kernel oil and coconut oil) and their degradation during this process. It is well known that during this culinary technique, oil's major and minor components degrade throughout different reactions, mainly thermoxidation, polymerization and, to a lesser extent, hydrolysis. If severe high temperatures are employed, isomerization to fatty acyl chains and cyclization are also possible.
View Article and Find Full Text PDFFoods
December 2024
Faculty of Chemistry, Plovdiv University "Paisii Hilendarski", 4000 Plovdiv, Bulgaria.
In this article, we present a unique system for identifying edible oils through the analysis of their thermophysical properties. The method is based on the use of active infrared thermography. The heating of the oils results from the optical absorption of laser radiation at a specified wavelength.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
The ferulic acid (FA) / monoglyceride (MG) mixture could act as a gelator to structure sunflower oil at the gelator concentration () ≥ 4 % and the FA/MG ratios () of 0:100, 25:75, 50:50 and 75:25. The rectangular FA and needle-shaped MG crystals in the oleogel interlock with each other to form a 3D network, restricting the flow of oil. The gel strength and rheological performance of the oleogel were positively correlated with and negatively correlated with storage temperature ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!