Targeting PARK7 Improves Acetaminophen-Induced Acute Liver Injury by Orchestrating Mitochondrial Quality Control and Metabolic Reprogramming.

Antioxidants (Basel)

Department of Military Toxicology and Chemical Defense Medicine, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an 710032, China.

Published: October 2022

Mitochondrial dysfunction and oxidative stress are considered to be key events in acetaminophen (APAP)-induced acute liver injury. Mitochondrial quality control, including mitophagy and mitochondrial synthesis, can restore mitochondrial homeostasis and thus protect the liver. The role of PARK7, a mitochondrial stress protein, in regulating mitochondrial quality control in APAP-induced hepatotoxicity is unclear. In this study, L02 cells, AML12 cells and C57/BL6 mice were each used to establish models of APAP-induced acute liver injury. PARK7 was silenced in vitro by lentiviral transfection and knocked down in vivo by AAV adeno-associated virus. Changes in cell viability, apoptosis, reactive oxygen species (ROS) level, serum enzyme activity and pathological features were evaluated after APAP treatment. Western blotting, real-time PCR, immunofluorescence, electron microscopy and Seahorse assays were used to detect changes in key indicators of mitochondrial quality control. The results showed that APAP treatment decreased cell viability and increased the apoptosis rate, ROS levels, serum enzyme activity, pathological damage and PARK7 expression. PARK7 silencing or knockdown ameliorated APAP-induced damage to the cells and liver. Furthermore, PARK7 silencing enhanced mitophagy, increased mitochondrial synthesis, and led to a switch from oxidative phosphorylation to glycolysis. Taken together, these results suggest that PARK7 is involved in APAP-induced acute liver injury by regulating mitochondrial quality control and metabolic reprogramming. Therefore, PARK7 may be a promising therapeutic target for APAP-induced liver injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686963PMC
http://dx.doi.org/10.3390/antiox11112128DOI Listing

Publication Analysis

Top Keywords

liver injury
20
mitochondrial quality
20
quality control
20
acute liver
16
apap-induced acute
12
mitochondrial
10
control metabolic
8
metabolic reprogramming
8
mitochondrial synthesis
8
regulating mitochondrial
8

Similar Publications

Liver Cirrhosis: ancient disease, new challenge.

Med Clin (Barc)

December 2024

Servicio de Hepatología, Hospital Clínic de Barcelona, Barcelona, España; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, España; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Barcelona,, España. Electronic address:

Liver cirrhosis is a common cause of morbidity and mortality worldwide. Excessive alcohol consumption and metabolic associated steatotic liver disease are the most common etiological factors of cirrhosis in our region. Cirrhosis occurs in two well-differentiated phases, compensated and decompensated, depending on the absence or presence of complications, respectively.

View Article and Find Full Text PDF

Gegen Qinlian Decoction inhibits liver ferroptosis in type 2 diabetes mellitus models by targeting Nrf2.

J Ethnopharmacol

December 2024

Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038; Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038. Electronic address:

Ethnopharmacological Relevance: Type 2 diabetes mellitus (T2DM) is a metabolic disease that can lead to complications affecting multiple organs, including the liver. Gegen Qinlian Decoction (GQD) has demonstrated considerable efficacy in the management of T2DM and its complications in accordance with the tenets of modern Chinese medicine. However, the molecular mechanism by which GQD alleviates diabetic liver injury is unclear.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Mangifera indica (family Anacardiaceae), often acknowledged as mango and renowned for being a plant of diverse ethnopharmacological background since ancient times, harbors the polyphenolic bioactive constituent, mangiferin (MNG). MNG is a major phytochemical of Mangifera indica and other plants with a wide range of reported pharmacological activities, including antioxidant, anti-inflammatory, neuroprotective and hepatoprotective effects. MNG has also been utilized in traditional medicine; it is reportedly a major bioactive element in over 40 polyherbal products in traditional Chinese medicine (TCM), and two prominent anti-inflammatory, immunomodulatory and antiviral Cuban formulations.

View Article and Find Full Text PDF

Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing.

View Article and Find Full Text PDF

35kDa SPECIFIC-SIZED HYALURONAN AMELIORATES HIGH-FAT DIET-INDUCED LIVER INJURY IN MURINE MODEL OF MODERATE OBESITY.

Matrix Biol

December 2024

Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH. Electronic address:

Obesity is a growing concern in the US and world-wide, associated with an increased risk for several cardiometabolic diseases, including metabolic associated steatotic liver disease (MASLD). Currently, therapeutic interventions to prevent and/or treat MASLD are limited, and research is needed to identify new therapeutic targets. The specific-sized 35kDa fragment of hyaluronan (HA35), has gut protective and anti-inflammatory properties and a previous pilot clinical study reported it is well tolerated in healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!