Water pollution is an immense environmental problem, and plant protection products are part of it. The organophosphorus insecticides, chlorpyrifos as an example, were used for years, and their high concentration could negatively influence ecosystems. Some of the plants, such as macrophytes, were exposed to a variety of stress factors. To live on, the macrophytes developed an efficient antioxidative system consisting of enzymatic and non-enzymatic antioxidants. The remediation process of polluted water ecosystems caused by plant protection products in our climate zone can be intensified if it is provided by autochthonic macrophytes. The results of our studies are part of the research that allows optimizing the phytoremediation process without irreversible effect on investigated species. The influence of various concentrations of chlorpyrifos on the enzymatic system in Canadian waterweed ( Michx.), needle spikerush ( L.), and water mint ( L.) were studied. The differences in values of guaiacol peroxidase (GPX) and glutathione S-transferase (GST) activities were determined in leaves and roots. Research indicated an increase in both enzyme activities in plants exposed to toxic compounds. The highest concentration of chlorpyrifos affected the highest activities of enzymes. The water mint roots responded with the highest value of glutathione S-transferase activity during cultivation in polluted environment. It was therefore concluded that an aqueous plant exposed to the toxic insecticide created a defensive mechanism by enzymatic antioxidant systems that correlated to the pollutant concentration and plant species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686717 | PMC |
http://dx.doi.org/10.3390/antiox11112104 | DOI Listing |
Plant Environ Interact
February 2025
Citrus Research International Nelspruit South Africa.
Citrus black spot (CBS), caused by , is an important fungal disease of citrus. Higher CBS severity has been associated with infections at the young and green stages of fruit. The length of the fruit susceptibility period may be influenced by the amount of inoculum and the climate of the citrus growing region.
View Article and Find Full Text PDFFront Microbiol
January 2025
Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.
Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.
View Article and Find Full Text PDFPhytoKeys
January 2025
Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland University of Gdansk Gdańsk Poland.
The genus includes some of the most important ornamental plants. The aim of this work was to study the seed morphology of species from East Kazakhstan, including seed coat structure. An analysis focused on five taxa from various natural environmental conditions.
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
Spermatogenesis in Lepidoptera holds significant importance due to its unique process of dichotomous spermatogenesis, yielding eupyrene and apyrene spermatozoa through a complex molecular mechanism. While E3 ubiquitin ligases are known to play vital roles in spermatogenesis across various processes, their functions in dichotomous spermatogenesis remain less known. We utilized the RNAi, biochemical and microscopic procedures to unravel the function of in dichotomous spermatogenesis of adult .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!