Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research focused on the development of an astrocyte cell model system (C6 glioma) for the assessment of molecular changes in response to cathodic passively balanced pulsed electrical stimulation at a rate of 50 Hz (60 µs duration, 0.15 mA intensity). Cells treated with selected neurotransmitters (glutamate, adenosine, D-serine, and γ-aminobutyric acid) were monitored (using specific fluorescent probes) for changes in levels of intracellular nitric oxide, calcium ions, and/or chloride. ES exerted an inhibitory effect on NO, increased calcium and had no effect on chloride. Using this model, cells can be assessed qualitatively and quantitatively for changes and these changes can be correlated with the putative molecular effects that electrical stimulation has on astrocytes and their role in glia-mediated diseases. This model system allows for faster and cheaper experiments than those involving animal models due to the potential to easily vary the conditions, reduce the number of variables (especially problematic in animal models), and closely monitor the cellular effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688288 | PMC |
http://dx.doi.org/10.3390/brainsci12111504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!