Dysregulation of high-frequency neuronal oscillations has been implicated in the pathophysiology of schizophrenia. Chronic methamphetamine (METH) use can induce psychosis similar to paranoid schizophrenia. The current study in mice aimed to determine the effect of chronic METH treatment on ongoing and evoked neuronal oscillations. C57BL/6 mice were treated with METH or vehicle control for three weeks and implanted with extradural recording electrodes. Two weeks after the last METH injection, mice underwent three EEG recording sessions to measure ongoing and auditory-evoked gamma and beta oscillatory power in response to an acute challenge with METH (2 mg/kg), the NMDA receptor antagonist MK-801 (0.3 mg/kg), or saline control. A separate group of mice pretreated with METH showed significantly greater locomotor hyperactivity to an acute METH challenge, confirming long-term sensitisation. Chronic METH did not affect ongoing or evoked gamma or beta power. Acute MK-801 challenge reduced ongoing beta power whereas acute METH challenge significantly increased ongoing gamma power. Both MK-801 and METH challenge suppressed evoked gamma power. Chronic METH treatment did not modulate these acute drug effects. There were minor effects of chronic METH and acute METH and MK-801 on selected components of event-related potential (ERP) waves. In conclusion, chronic METH treatment did not exert neuroplastic effects on the regulation of cortical gamma oscillations in a manner consistent with schizophrenia, despite causing behavioural sensitisation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688055 | PMC |
http://dx.doi.org/10.3390/brainsci12111503 | DOI Listing |
Methamphetamine (METH) is a highly addictive and dangerous drug that mainly affects neurotransmitters in the brain and leads to feelings of alertness and euphoria. The METH use can lead to addiction, which has become a worldwide problem, resulting in a slew of public health and safety issues. Recent studies showed that chronic METH use can lead to neurotoxicity, neuro-inflammation and oxidative stress which can lead to neuronal injury.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, PR China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, PR China. Electronic address:
Addict Neurosci
December 2024
Department of Neuroscience, Medical University of South Carolina, Basic Science Building 416, MSC 510, 173 Ashley Avenue, Charleston, SC 29425, USA.
Methamphetamine (meth) use disorder is part of an overarching use disorder that encompasses continued drug seeking and an increased risk of returning to drug use following periods of abstaining. Chronic meth use results in drug-induced cortical plasticity in the perirhinal cortex (PRC) that mediates responses to novelty. PRH projection targets are numerous and include the nucleus accumbens core (NAc).
View Article and Find Full Text PDFPhysiol Behav
March 2025
Faculty of Sports Science, Ningbo University, Zhejiang, PR China. Electronic address:
Objective: Chronic methamphetamine use is frequently associated with impairments in the attentional network (alerting, orienting, conflict networks) and related brain regions, which significantly trigger METH-related cravings. The aim of this study is to investigate the effects of moderate-intensity acute aerobic exercise on cravings and attentional networks in individuals with methamphetamine use disorders (MUD).
Methods: Using a cross-over design, this study recruited 32 male MUDs to randomly complete a 30min moderate-intensity aerobics exercise condition (65%-75% HRmax) and an assigned material reading control condition, with a 7-day washout interval.
Toxicol Rep
December 2024
Department of Pathology, College of Medicine, University of Baghdad, Baghdad, Iraq.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!