The study’s purposes were to examine the associations of training load parameters with locomotor demand and puberty status in elite young soccer players and to predict the percentage of changes in their performance ability with adjustments to the training load parameters, using multivariate regression analysis, while considering PHV and maturity offset. Seventeen male players (15−16 years old) participated in this study. Anthropometrics, body composition, maximal oxygen consumption (VO2max), and puberty status (for calculating PHV) and maturity offset were assessed. The results demonstrated substantial differences between the PHV, VO2max, and load parameters (acute and chronic workload (CWL)) over a soccer season. A substantial relationship existed between the workload parameters (VO2max, CWL, and training monotony (TM)) and maturity offset. All of the variables, except for training strain, demonstrated significant variances in relation to the differences between the first and second halves (p < 0.05). Aerobic performance can be estimated using the CWL, TM, and maturity offset values (R2 = 0.46). On the contrary, aerobic power performance can be explained using the acute:chronic workload, TM, and PHV values (R2 = 0.40). In conclusion, the biological maturity state of young soccer players has a substantial impact on their functional potential. Variations in accumulated load contribute significantly to aerobic resistance, whereas weight and height contribute significantly to sprint and vertical-jump performance, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687643PMC
http://dx.doi.org/10.3390/biology11111594DOI Listing

Publication Analysis

Top Keywords

load parameters
16
maturity offset
16
young soccer
12
soccer players
12
parameters locomotor
8
locomotor demand
8
elite young
8
training load
8
puberty status
8
phv maturity
8

Similar Publications

Anticipatory postural adjustments (APAs) are responsible for a successful first step execution in handstand walking. This study evaluates gymnasts' ability to adapt their APAs and stepping parameters in response to adding/removing an external load over repeated handstand walking initiation trials. Eighteen gymnasts performed five handstand walking initiation trials without load (PRE), eight trials with an external load (LOAD) and five trials with removed load (POST).

View Article and Find Full Text PDF

Wave-absorbing honeycombs have garnered widespread attention due to their high-efficiency absorption, ultra-wideband absorption, lightweight nature, and high load-carrying capacity. However, as electromagnetic radiation power increases, the temperature of the absorbing honeycomb increases rapidly, even leading to burning. Therefore, it is significant to possess an efficient and accurate assessment of the thermal effects of absorbing honeycombs under electromagnetic radiation.

View Article and Find Full Text PDF

Hierarchical braking accurate control of electrohydraulic composite braking system for electric vehicles.

ISA Trans

January 2025

School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, China. Electronic address:

For the electrohydraulic composite braking system, the general total braking force calculation strategy frequently ignores the resist forces, thereby cannot track the braking intention of driver perfectly. Moreover, the torque allocation process reduces the control reliability and energy recovery effect. In this research, a novel hierarchical braking accurate control (HBAC) algorithm is designed to achieve both the control accuracy and the ideal energy recovery efficiency.

View Article and Find Full Text PDF

: The aim of this work was to assess the effect of a conservative therapeutic intervention on the changes in the foot load distribution in people with femoroacetabular impingement (FAI) syndrome practising long-distance running. : The study involved 44 men, aged 30 to 50 years, practising long-distance running. Two rounds of tests were conducted in the Laboratory of Biokinetics of the AWF in Kraków.

View Article and Find Full Text PDF

Objective: Aim: Study the mechanism of interaction between the 'sacroiliac joint - screw' system and determine the optimal parameters of the stabilizing structure, the strength of the system connection through computer modeling, and anatomical-biomechanical experiment.

Patients And Methods: Materials and Methods: The optimal parameters of the stabilizing structure for the sacroiliac joint were calculated using software package MathCAD. To validate the results of the numerical modeling, corresponding investigations of mechanical characteristics and determination of stiffness of the studied systems were conducted by an upgraded testing stand, TIRAtest-2151.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!