Cancer is the utmost common disease-causing death worldwide, characterized by uncontrollable cell division with the potential of metastasis. Overexpression of the Inhibitors of Apoptosis proteins (IAPs) and autophagy correlates with tumorigenesis, therapeutic resistance, and reoccurrence after anticancer therapies. This study illuminates the role and efficacy of smac mimetic compound BV6 alone and in co-treatment with death ligands such as TRAIL and TNFα in the regulation of cell death mechanisms, i.e., apoptosis and autophagy. In this study, MTT assays, wound healing assays, and cellular and nuclear morphological studies were done. DAPI staining, AO/EtBr staining and AnnexinV/PI FACS was done to study the apoptosis. The expression of IAPs and autophagy biomarkers was analyzed using Real time-PCR and western blotting. Meanwhile, TEM demonstrated autophagy and cellular autophagic vacuoles in response to the BV6. The result shows a promising anti-cancer effect of BV6 alone as well as in combinational treatment with TRAIL and TNFα, compared to the lone treatment of TRAIL and TNFα in both breast cancer cell lines. The smac mimetic compound might provide an alternative combinational therapy with conventional anticancer therapies to tackle their inefficiency at the advanced stage of cancer, cancer resistance, and reoccurrence. Also, IAPs and autophagic proteins could act as potent target molecules for the development of novel anti-cancer drugs in pathogenesis and the betterment of regimens for cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687886 | PMC |
http://dx.doi.org/10.3390/biology11111581 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Biology, Kyung Hee University, Seoul, 02447, South Korea. Electronic address:
Fragile X Mental Retardation Protein 1 (FMR1) is a translational repressor crucial for regulating genes in the central nervous system. While a lack of FMR1 expression causes Fragile X Syndrome (FXS), its overexpression is implicated in various cancers, necessitating tight regulation of FMR1 protein levels for normal cell physiology. In this study, we report that FMR1 is upregulated in gastric cancer patients.
View Article and Find Full Text PDFCells
November 2024
School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China.
SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD).
View Article and Find Full Text PDFMacrophages engulf apoptotic bodies and cellular debris as part of homeostasis, but they can also phagocytose live cells such as aged red blood cells. Pharmacologic reprogramming with the SMAC mimetic LCL161 in combination with T cell-derived cytokines can induce macrophages to phagocytose live cancer cells in mouse models. Here we extend these findings to encompass a wide range of monovalent and bivalent SMAC mimetic compounds, demonstrating that live cell phagocytosis is a class effect of these agents.
View Article and Find Full Text PDFSci Rep
December 2024
Human Anatomy and Embryology Area, Department of Functional Biology and Health Sciences, University of Vigo, Lagoas-Marcosende, s/n, Vigo, 36310, Spain.
Oral squamous cell carcinoma (OSCC) poses significant health risks with increasing incidence and mortality rates. In this context, there is an urgent need to explore novel biomarkers to enhance therapeutic strategies and improve survival. Understanding apoptotic evasion in cancer pathogenesis, this pioneering study aims to investigate the correlation between a pro-apoptotic protein Smac/DIABLO and patient prognosis within the OSCC cohort.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
November 2024
Aix-Marseille Univ, CNRS, INP, Institute of Neurophysiopathology UMR7051, Team Gliomagenesis and Microenvironment, Faculté des Sciences Médicales et Paramédicales - Secteur Timone, 27, Bd Jean Moulin, Marseille, 13005, France.
Glioblastoma (GBM), an incurable primary brain tumor, typically requires surgical intervention followed by chemoradiation; however, recurrences remain fatal. Our previous work demonstrated that a nanomedicine hydrogel (GemC-LNC) delays recurrence when administered post-surgery. However, tumor debulking also triggers time-dependent immune reactions that promote recurrence at the resection cavity borders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!