AI Article Synopsis

  • Caffeine might help prevent a lung problem called bronchopulmonary dysplasia (BPD) in babies.
  • Scientists tested how caffeine works by studying special lung cells in harsh conditions with too much oxygen.
  • They found that caffeine helps these cells live longer, grow better, and stay healthier by affecting certain signals in the cells.

Article Abstract

Caffeine has been shown to reduce the incidence of bronchopulmonary dysplasia (BPD). To investigate the protective mechanism of caffeine in a hyperoxia-based cell model of BPD in vitro. Type II alveolar epithelial cells (AECs II) were isolated and randomly divided into 6 groups: the normal, hyperoxia, caffeine (50 μM caffeine), antagonist (5 μM ZM241385), agonist (5 μM CGS21680), and DMSO groups. Transfection with siRNA against adenosine A2A receptor (siA2AR) was performed in AECs II. Caffeine alone or in combination with adenosine A2A receptor (A2AR) antagonist inhibited apoptosis, promoted proliferation and reduced oxidative stress (OS). The cyclic adenosine monophosphate (cAMP), protein kinase A (PKA) mRNA, A2AR mRNA and the protein levels of A2AR, phospho-Src, phospho-ERK1/2, phospho-P38 and cleaved caspase-3 were decreased in the caffeine and antagonist groups compared with that in the hyperoxia group. However, the effects of caffeine above were weakened by the A2AR agonist. Knockdown of A2AR showed similar results to caffeine. Caffeine can reduce apoptosis, promote proliferation, and alleviate OS in hyperoxia-induced AECs II injury by inhibiting the A2AR/cAMP/PKA/Src/ERK1/2/p38MAPK signaling pathway. Caffeine and A2AR may serve as a promising therapeutic target for BPD in prematurity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662006PMC
http://dx.doi.org/10.1080/13510002.2022.2143114DOI Listing

Publication Analysis

Top Keywords

adenosine a2a
12
caffeine
11
oxidative stress
8
pathway caffeine
8
caffeine reduce
8
caffeine antagonist
8
a2a receptor
8
a2ar
6
caffeine reduces
4
reduces oxidative
4

Similar Publications

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A receptor.

View Article and Find Full Text PDF

Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Transformation of pro-interleukin (IL)-1β into a mature IL-1β via active inflammasome may be related to the progression of PD. Therefore, the modification of inflammasome activity may be a potential therapeutic strategy for PD.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is the most common type of sleep apnea, which leads to episodes of intermittent hypoxia due to obstruction of the upper airway. A key feature of OSA is the upregulation and stabilization of hypoxia-inducible factor 1 (HIF-1), a crucial metabolic regulator that facilitates rapid adaptation to changes in oxygen availability. Adenosine A2A receptor (A2AR), a major adenosine receptor, regulates HIF-1 under hypoxic conditions, exerting anti-inflammatory properties and affecting lipid metabolism.

View Article and Find Full Text PDF

Ligand Binding Kinetics to Evaluate Function and Stability of AR in Nanodiscs.

Biophys J

December 2024

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213 United States of America. Electronic address:

G-Protein coupled receptors (GPCRs) represent one of the largest classes of therapeutic targets. However, developing successful therapeutics to target GPCRs is a challenging endeavor with many molecules failing during in vivo clinical trials due to a lack of efficacy. The in vitro identification of drug targeted residence time (1/k) has been suggested to improve prediction of in vivo success.

View Article and Find Full Text PDF

Vidarabine (VID) is an antiviral medication that is commonly utilized to treat conditions such as hand, foot, and mouth disease and herpes. Constipation is a prevalent complication of these diseases. Could VID treat these diseases by influencing defecation behavior? To date, no studies have been conducted on the potential of VID to relieve constipation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!