Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-022-05493-4 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218.
The hippocampal dentate gyrus (DG) is thought to orthogonalize inputs from the entorhinal cortex (pattern separation) and relay this information to the CA3 region. In turn, attractor dynamics in CA3 perform a pattern completion or error correction operation before sending its output to CA1. In a mouse model of congenital hypoplasia of the DG, a deficiency in the (Wls) gene, specifically in cells expressing , which targets neuronal progenitors, led to an almost total absence of dentate granule cells and modestly impaired performance in spatial tasks.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Courant Institute for Mathematical Sciences and Department of Biology, New York University, New York, NY 10012.
Accurate chromosome segregation in mitosis depends on proper connections of sister chromatids, through microtubules, to the opposite poles of the early mitotic spindle. Transiently, many inaccurate connections are formed and rapidly corrected throughout the mitotic stages, but a small number of merotelic connections, in which a chromatid is connected to both spindle poles, remain lagging at the spindle's equator in anaphase. Most of the lagging chromatids are eventually moved to one or the other pole, likely by a combination of microtubules' turnover and the brute force of pulling by the microtubules' majority from the one pole against the microtubules' minority from the other pole.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Computer Science, School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134.
As knowledge accumulates in science and society in a distributed fashion, erroneous derivations can be introduced into the corpus of knowledge. Such derivations can compromise the validity of any units of knowledge that rely on them in the future. Can societal knowledge maintain some level of integrity given simple distributed error-checking mechanisms? In this paper, we investigate the following formulation of the question: assuming that a constant fraction of the new derivations is wrong, is it possible for simple error-checking mechanisms that apply when a new unit of knowledge is derived to maintain the integrity of the corpus of knowledge? This question was introduced by Ben-Eliezer et al.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Hepatobiliary and Transplantation Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Background And Objectives: Urological complications after kidney transplantation, due to the ureteroneocystostomy, are associated with significant morbidity, prolonged hospital stay and even mortality. Ureteral stents can minimize the number of complications but are not consistently used, as previous studies were retrospective in nature. We aim to prospectively determine the most effective stenting approach.
View Article and Find Full Text PDFPLoS One
January 2025
Shanghai Xinhao Information Technology Co., Ltd., Shanghai, China.
Machine learning techniques and computer-aided methods are now widely used in the pre-discovery tasks of drug discovery, effectively improving the efficiency of drug development and reducing the workload and cost. In this study, we used multi-source heterogeneous network information to build a network model, learn the network topology through multiple network diffusion algorithms, and obtain compressed low-dimensional feature vectors for predicting drug-target interactions (DTIs). We applied the metropolis-hasting random walk (MHRW) algorithm to improve the performance of the random walk with restart (RWR) algorithm, forming the basis by which the self-loop probability of the current node is removed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!