A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Second Harmonic Generation Microscopy as a Novel Intraoperative Assessment of Rat Median Nerve Injury. | LitMetric

Purpose: Nerves that are functionally injured but appear macroscopically intact pose the biggest clinical dilemma. Second Harmonic Generation (SHG) Microscopy may provide a real-time assessment of nerve damage, with the ultimate goal of allowing surgeons to accurately quantify the degree of nerve damage present. The aim of this study was to demonstrate the utility of SHG microscopy to detect nerve damage in vivo in an animal model.

Methods: Ten Sprague-Dawley rats were anesthetized and prepared for surgery. After surgical exposure and using a custom-made stretch applicator, the right median nerves were stretched by 20%, corresponding to a high strain injury, and held for 5 minutes. The left median nerve served as a sham control (SC), only being placed in the applicator for 5 minutes with no stretch. A nerve stimulator was used to assess the amount of stimulation required to induce a flicker and contraction of the paw. Nerves were then imaged using a multiphoton laser scanning microscope.

Results: Immediately after injury (day 0), SHG images of SC median nerves exhibited parallel collagen fibers with linear, organized alignment. In comparison with SC nerves, high strain nerves demonstrated artifacts indicative of nerve damage consisting of wavy, undulating fibers with crossing fibers and tears, as well as a decrease in the linear organization, which correlated with an increase in the mean stimulation required to induce a flicker and contraction of the paw.

Conclusions: Second Harmonic Generation microscopy may provide the ability to detect an acute neural stretch injury in the rat median nerve. Epineurial collagen disorganization correlated with the stimulation required for nerve function.

Clinical Relevance: In the future, SHG may provide the ability to visualize nerve damage intraoperatively, allowing for better clinical decision-making. However, this is currently a research tool and requires further validation before translating to the clinical setting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhsa.2022.09.017DOI Listing

Publication Analysis

Top Keywords

nerve damage
20
second harmonic
12
harmonic generation
12
median nerve
12
stimulation required
12
nerve
10
generation microscopy
8
rat median
8
shg microscopy
8
microscopy provide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!