Silk fibroin based interpenetrating network hydrogel for corneal stromal regeneration.

Int J Biol Macromol

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland. Electronic address:

Published: December 2022

AI Article Synopsis

  • There is a growing need for alternatives to donor corneas for transplantation, prompting research into tissue engineering methods for corneal regeneration.
  • A novel technique using free-radical polymerization was employed to create three-dimensional hydrogels with varying ratios of silk fibroin and polyacrylamide, resulting in hydrogels with interconnected pores beneficial for cell migration.
  • The study demonstrated that these hydrogels supported human corneal stromal cell growth and health, indicating potential for future clinical applications in corneal tissue repair.

Article Abstract

There is a need to develop tissue engineering based approaches to address the shortage of donor corneas worldwide for transplantation. To do this a novel approach to fabricate three-dimensional hydrogels using free-radical polymerization was investigated to generate constructs for corneal stromal tissue regeneration. Different ratios of silk fibroin (SF) to polyacrylamide (PA) were used to fabricate semi-interpenetrating hydrogels. Scanning electron micrograph displayed the interconnectivity of pores within the fabricated hydrogels. Pore sizes ranged from 25 to 66 μm. Scaffolds with increasing concentration of SF had enhanced β-sheet structure (verified by Fourier transform infrared spectroscopy). The biological response of human corneal stromal cells to these hydrogels was examined using cellular adhesion, proliferation, cytoskeleton organization, gene expression and immunocytochemical analysis. The fabricated hydrogels possess rapid gelation (∼3 min) at 37 °C, 84 % porosity facilitating keratocyte migration during healing, improved cellular adhesion and no cytotoxicity, indicating their efficiency for in-situ corneal tissue regeneration. Presence of SF in semi-interpenetrating network hydrogel enhanced cellular proliferation, elevated GAG deposition, and increased expression of keratocyte genes, normally associated with healthy corneal stromal tissue. This study acts as an initial step towards fabricating SF based semi-interpenetrating network hydrogels for developing clinically applicable ocular implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.021DOI Listing

Publication Analysis

Top Keywords

corneal stromal
16
silk fibroin
8
network hydrogel
8
stromal tissue
8
tissue regeneration
8
fabricated hydrogels
8
cellular adhesion
8
semi-interpenetrating network
8
hydrogels
6
corneal
5

Similar Publications

Purpose: To describe a rare case of infectious keratitis secondary to Brevundimonas diminuta, a gram-negative bacillus with fluoroquinolone resistance and rare clinical isolation.

Methods: A 50-year-old man with contact lens overuse presented with a large corneal ulcer and hand motion visual acuity. Initial treatment with fortified topical tobramycin and vancomycin yielded slow improvement, and initial culture grew Staphylococcus epidermidis, Staphylococcus hominis, and Corynebacterium bovis.

View Article and Find Full Text PDF

PCR-based diagnosis and clinical insights into parasitic keratitis.

J Microbiol Immunol Infect

January 2025

Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Purpose: This retrospective study aimed to investigate demographic characteristics, predisposing factors, and clinical outcomes in patients with parasitic keratitis.

Methods: Medical records of patients with molecularly confirmed Acanthamoeba or microsporidia, identified through corneal scraping specimens (collected between September 21, 2017, and June 27, 2023), were reviewed. Demographic data, clinical profiles, such as symptom duration before confirmed diagnosis, antiviral treatment pre-diagnosis, contact lens use, tap water and soil contamination, ocular trauma, and treatment regimens, were analyzed.

View Article and Find Full Text PDF

Distinct Ocular Surface Microbiome in Keratoconus Patients Correlate With Local Immune Dysregulation.

Invest Ophthalmol Vis Sci

January 2025

GROW Research Laboratory, Narayana Netralaya Foundation, Bangalore, India.

Purpose: Keratoconus (KC) is characterized by irregular astigmatism along with corneal stromal weakness and is associated with altered immune status. Tissue resident microbiomes are known to influence the immune status in other organs, but such a nexus has not been described in ocular conditions. Therefore, we examined the ocular surface microbiome of patients with KC and correlated it to the immune cell and tear molecular factor profiles.

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

The study aimed to compare the effects of different types of excimer laser keratectomy on rabbit corneas and to identify the optimal disease model for corneal ectasia. Additionally, investigating the structural and molecular alterations in the novel disease model helped explore the mechanisms underlying biomechanical cues in corneal ectasia. 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!