Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger required for normal physiology as well as survival under hypoxic and reductive stress conditions of mycobacterial cells. Complete degradation of c-di-GMP is necessary for signal termination and maintaining its homeostasis inside the cells. Homeostasis of c-di-GMP in mycobacteria is brought about by the bifunctional diguanylate cyclase (DGC) that synthesizes c-di-GMP from two molecules of GTP and also catalyses the asymmetric cleavage of c-di-GMP to linear pGpG through its phosphodiesterase activity. However, the mycobacterial enzyme for the last step of degradation from pGpG to GMP has not been characterized thus far. Here, we present the identification of oligoribonuclease (Orn) as the most likely phosphodiesterase to degrade pGpG to GMP through AlphaFold-empowered structural homology that exhibited in vitro phosphodiesterase activity on pGpG substrates. In order to understand the physiological role of Orn in mycobacteria, we created a deletion mutant of orn in M. smegmatis and analysed the phenotypes that are associated with c-di-GMP signaling. We find that orn plays important roles in vivo and is required not only for proper growth of M. smegmatis in normal and stress conditions but also for biofilm formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.029 | DOI Listing |
Liver Int
February 2025
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Background And Aims: Maternal obesity increases the risk of the paediatric form of metabolic dysfunction-associated steatotic liver disease (MASLD), affecting up to 30% of youth, but the developmental origins remain poorly understood.
Methods: Using a Japanese macaque model, we investigated the impact of maternal Western-style diet (mWSD) or chow diet followed by postweaning WSD (pwWSD) or chow diet focusing on bile acid (BA) homeostasis and hepatic fibrosis in livers from third-trimester fetuses and 3-year-old juvenile offspring.
Results: Juveniles exposed to mWSD had increased hepatic collagen I/III content and stellate cell activation in portal regions.
BMC Plant Biol
January 2025
State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.
View Article and Find Full Text PDFMol Med
January 2025
Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.
Background: Neuropathic pain (NP) is a debilitating condition caused by lesion or dysfunction in the somatosensory nervous system. Accumulation of advanced oxidation protein products (AOPPs) is implicated in mechanical hyperalgesia. However, the effects of AOPPs on NP remain unclear.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Background: Atherosclerosis (AS) is a major contributor to vascular disorders and represents a significant risk to human health. Currently, first-line pharmacotherapies are associated with substantial side effects, and the development of atherosclerosis is closely linked to dietary factors. This study evaluated the effects of a dietary supplement, EsV3, on AS in apolipoprotein E (ApoE) model mice.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
Considering the significance of fenugreek as a valuable medicinal and food plant, assessing the genetic diversity of different populations of this species is essential for optimizing performance and adaptability to environmental conditions. This study aims to investigate genetic diversity and identify important phenotypic traits in various Iranian fenugreek accessions ("Mashhad", "Tehran", "Yazd", "Shiraz", "Birjand", "Isfahan", "Kerman", "Kalat", "Neyshabur"), an experiment was conducted in a randomized complete block design with three replications and nine treatments (accessions) in Iran. The results showed that the highest seed yield was observed in "Kalat" (120.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!