Contrasting catchment soil pH and Fe concentrations influence DOM distribution and nutrient dynamics in freshwater systems.

Sci Total Environ

Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 05. Czech Republic.

Published: February 2023

Organic matter (OM) quantity, quality, and nutrient dynamics within twelve shallow lakes in the Czech Republic were assessed in the context of catchment soil pH and iron (Fe) concentration. The catchments of the lakes were classified into two categories: (i) slightly acidic (soil pH = 5.1-6.3) with Fe-rich soils (H_Fe; Fe = 315-344 mg kg in Mehlich 3 extract); and (ii) neutral (soil pH = 6.8-7.6) with Fe-poor soils (L_Fe; Fe = 126-259 mg kg in Mehlich 3 extract). The quality of OM in the two lake types was characterized using a combination of spectroscopic techniques (UV-Vis, fluorescence, and Fourier Transform Infrared spectroscopy). We show that dissolved nutrient and dissolved organic carbon (DOC) concentrations, as well as the amount of aromatic and protein-like compounds in the water column and sediment porewater were significantly (p < 0.01) lower in the H_Fe lakes compared to the waterbodies located within L_Fe catchments. The FTIR analyses of the H_Fe sediments contained higher relative concentrations of aromatic compounds with hydroxyl-containing functional groups and carbohydrates, while more aliphatic and oxidised OM was found in the L_Fe lake sediments. These results suggest that the pH value of catchment soils and, particularly, their Fe content have profound geochemical effects on the mobility of OM and nutrients in the sediments of recipient waters. Because the OM-Fe association stabilises OM in sediments, waterbodies within L_Fe catchments are likely more vulnerable to increasing eutrophication and oxygen depletion compared to those in H_Fe catchments and this has important implications for water quality management, risk assessment, and predictions of aquatic ecosystem vulnerability under conditions of accelerating climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.159988DOI Listing

Publication Analysis

Top Keywords

catchment soil
8
nutrient dynamics
8
mehlich extract
8
l_fe catchments
8
contrasting catchment
4
soil
4
soil concentrations
4
concentrations influence
4
influence dom
4
dom distribution
4

Similar Publications

Investigating the salinity distribution using field measurements in the semi-arid region of southern Ethiopia.

Environ Monit Assess

January 2025

Natural Resources Management, Irrigation, and Salinity Program, Arba Minch Agricultural Research Center, PO.BOX, 2228, Arba Minch, Ethiopia.

This study investigated the distribution of salinity and sodicity in the irrigated areas of Abaya Chamo. Representative water and soil samples were collected from different soil depths (0-30 cm and 30-60 cm). Sodium absorption ratio (SAR), electrical conductivity (Ec), pH, exchange sodium, magnesium, calcium, and potassium cations, and exchange sodium percentage (ESP) of the sampled sites were analyzed for soil salinity classification and severity analysis.

View Article and Find Full Text PDF

Several groundwater quality investigations have been conducted in coastal regions that are commonly exposed to multiple anthropogenic stressors. Nonetheless, such studies remain challenging because they require focused-diagnostic approaches for a comprehensive understanding of groundwater contamination. Therefore, this study integrates a multi-tracer approach to acquire comprehensive information allowing for an improved understanding of the origins of groundwater contamination, the relative contribution of contaminants, and their biogeochemical cycling within a coastal groundwater system.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) present in surface aquatic systems is a heterogeneous mixture of organic compounds reflecting its allochthonous and autochthonous organic matter (OM) sources. The composition of DOM is determined by environmental factors like land use, water chemistry, and climate, which influence its release, movement, and turnover in the ecosystem. However, studying the impact of these environmental factors on DOM composition is challenging due to the dynamic nature of the system and the complex interactions of multiple environmental factors involved.

View Article and Find Full Text PDF

Impact of land-use and fecal contamination on Escherichia populations in environmental samples.

Sci Rep

December 2024

Food System Integrity, AgResearch Limited, Hopkirk Research Institute, Massey University, Cnr University Avenue and Library Road, Private Bag 11008, Palmerston North, 4442, New Zealand.

Understanding the composition of complex Escherichia coli populations from the environment is necessary for identifying strategies to reduce the impacts of fecal contamination and protect public health. Metabarcoding targeting the hypervariable gene gnd was used to reveal the complex population diversity of E. coli and phenotypically indistinct Escherichia species in water, soil, sediment, aquatic biofilm, and fecal samples from native forest and pastoral sites.

View Article and Find Full Text PDF

This study provides crucial insights into sustainable water resource management in an agriculture-dominated, water-scarce region. The long-term hydrologic potential of the Purna sub-catchment (in India) was simulated using the Soil and Water Assessment Tool (SWAT) under a multimetric calibration approach. A comprehensive evaluation of the SWAT-simulated streamflows, incorporating graphical and quantitative assessments (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!