A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evenness, biodiversity, and ecosystem function of intertidal communities along the Italian coasts: Experimental short-term response to ambient and extreme air temperatures. | LitMetric

Evenness, biodiversity, and ecosystem function of intertidal communities along the Italian coasts: Experimental short-term response to ambient and extreme air temperatures.

Sci Total Environ

Department of Earth and Marine Sciences (DiSTeM), University of Palermo, viale delle Scienze Ed. 16, 90128 Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.

Published: February 2023

AI Article Synopsis

  • * A study conducted along the Italian coast explored how different levels of biodiversity affected intertidal communities' response to low tide and temperature changes, focusing on metrics like species richness, functional diversity, and community respiration rates.
  • * Results indicated that community evenness was the best predictor of ecosystem functioning under varying temperatures, while species richness had little impact; environmental factors like thermal history and seawater chlorophyll also played roles in how these communities responded.

Article Abstract

Biodiversity can promote ecosystem functioning in both terrestrial and marine environments, emphasizing the necessity of biodiversity conservation in order to preserve critical ecosystem functions and associated services. However, the role of biodiversity in buffering ecosystem functioning under extreme events caused by climate change remains a major scientific issue, especially for intertidal systems experiencing stressors from both terrestrial and marine drivers. We performed a regional-scale field experiment along the Italian coast to investigate the response of unmanipulated intertidal communities (by using a natural biodiversity gradient) to low tide aerial exposure to both ambient and short-term extreme temperatures. We specifically investigated the relationship between Biodiversity and Ecosystem Functioning (BEF) using different biodiversity indexes (species richness, functional diversity and evenness) and the response of the intertidal communities' ecosystem functioning (community respiration rates). Furthermore, we investigated which other environmental variables could influence the BEF relationship. We show that evenness explained a greater variation in intertidal community ecosystem functioning under both temperature conditions. Species richness (the most often used diversity metric in BEF research) was unrelated to ecosystem functioning, while functional diversity was significantly related to respiration under ambient but not extreme temperatures. We highlight the importance of the short-term thermal history of the communities (measured as body temperature) in the BEF relationship as it was consistently identified as the best predictor or response under both temperature conditions. However, Chlorophyll a in seawater and variation in sea surface temperature also contributed to the BEF relationship under ambient but not under extreme conditions, showing that short-duration climate-driven events can overcome local physiological adaptations. Our findings support the importance of the BEF relationship in intertidal communities, implying that systems with more diverse and homogeneous communities may be able to mitigate the effects of extreme temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160037DOI Listing

Publication Analysis

Top Keywords

ecosystem functioning
24
bef relationship
16
intertidal communities
12
ambient extreme
12
extreme temperatures
12
ecosystem
8
biodiversity ecosystem
8
terrestrial marine
8
species richness
8
functional diversity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: