Microfibrillated cellulose as growth media for cultivation and maintenance of wood decay fungi.

J Microbiol Methods

Laboratory for Cellulose & Wood Materials, Empa, St. Gallen, Switzerland.

Published: December 2022

Newly enforced trade restrictions on seaweed, have resulted in short supply of technical agar with potential consequences for research, public health, and clinical labs. Here we show that microfibrillated cellulose (MFC), with and without an additional carbon source, can be used as an inexpensive growth media for cultivating and maintaining wood decay fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2022.106615DOI Listing

Publication Analysis

Top Keywords

microfibrillated cellulose
8
growth media
8
wood decay
8
decay fungi
8
cellulose growth
4
media cultivation
4
cultivation maintenance
4
maintenance wood
4
fungi newly
4
newly enforced
4

Similar Publications

Wood-Derived Hydrogels for Osteochondral Defect Repair.

ACS Nano

December 2024

Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Repairing cartilage tissue is a serious global challenge. Herein, we focus on wood skeletal structures that are highly porous for cell penetration yet have load-bearing strength, and aim to synthesize wood-derived hydrogels with the ability to regenerate cartilage tissues. The hydrogels were synthesized by wood delignification and the subsequent intercalation of citric acid (CA), which is involved in tricarboxylic acid cycles and essential for energy production, and -acetylglucosamine (NAG), which is a cartilage glycosaminoglycan, among cellulose microfibrils.

View Article and Find Full Text PDF

The effect of digestion on nanocarriers will affect the release and pharmacological effects of bioactive compounds in delivery systems. The digestion of cellulose is limited to gut microbiota, which offers a new research strategy for targeted delivery of bioactive compounds. Herein, positively charged cellulose-like chitosan/polyvinylpyrrolidone nanofiber was prepared to improve the residence time, colon target and gut microbiota regulation activity of quercetin decorated selenium nanoparticles (QUE@SeNPs/CS/PVPNFs).

View Article and Find Full Text PDF

We successfully enhanced bacterial cellulose (BC) production in low-cost coconut water (CW) at 37 °C by low-nutrient adaptation of Komagataeibacter xylinus MSKU 12. In this study, the BC yield was significantly increased by simultaneous coculture fermentation of MSKU 12 with Saccharomyces bayanus in Hestrin-Schramm (HS) and CW media. Coculture fermentation at 30 °C produced BC yields of 13.

View Article and Find Full Text PDF

Genome-wide analysis of the cotton COBRA-like gene family and functional characterization of GhCOBL22 in relation to drought tolerance.

BMC Plant Biol

December 2024

Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China.

Background: The COBRA-like (COBL) gene family is a crucial glycosylphosphatidylinositol (GPI)-anchored proteins that participate in various biological processes in plants by regulating the arrangement of cell wall microfibrils. While the functions of COBL genes have been analyzed in several plant species, their roles in cotton's response to abiotic stress remain unexplored.

Results: This study identified and characterized the COBL gene family in Gossypium hirsutum, revealing a total of 39 COBL family members classified into five subgroups.

View Article and Find Full Text PDF

COBRA-LIKE 9 modulates cotton cell wall development via regulating cellulose deposition.

Plant Physiol

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.

Plant cell walls are complex and dynamic cellular structures critical for plant growth, development, physiology, and adaptation. Cellulose is one of the most important components of the cell wall. However, how cellulose microfibrils deposit and assemble into crystalline cellulose remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!