Seawater electrolysis is considered to be very challenging owing to competitive reaction kinetics in between oxygen evolution reaction and corrosive chlorine evolution reaction mechanism at anode, especially towards higher current density. The present work, proposes a promising and energy efficient strategy by coupling seawater splitting with urea decomposition lowering oxidation potential and thereby avoiding hypochlorite formation even at high current density. The rational design of Mott-Schottky heterojunction of Se/NiSe as electrocatalyst is considered to be highly effective in this regard. The developed Se/NiSe exhibits extraordinary energy saving for alkaline seawater splitting in presence of urea. The Se/NiSe/NF || Se/NiSe/NF electrolyser configuration achieved 10 and 50 mAcm current densities with cell voltage of 1.59 and 1.70 V along with outstanding operational durability over 50 h. The large number of carrier density generates by synergistic self-driven electron transfer from Se to NiSe at the heterojunction, unique metallic properties of selenium (Se), and also abundance accessible reactive edges on the porous channel of Ni foam are believed to be the reason behind such enhanced electrocatalytic activities towards urea oxidation reaction and hydrogen evolution reaction offering unique and much energy saving approach for alkaline-urea-seawater electrolysis avoiding hypochlorite formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.10.149 | DOI Listing |
Nanomicro Lett
January 2025
State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
Seawater electrolysis offers a promising pathway to generate green hydrogen, which is crucial for the net-zero emission targets. Indirect seawater electrolysis is severely limited by high energy demands and system complexity, while the direct seawater electrolysis bypasses pre-treatment, offering a simpler and more cost-effective solution. However, the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis's efficiency.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India.
Rabies is a deadly neurotropic, zoonotic disease with a mortality rate of 100% after symptoms appear. Rabies virus (RABV) is the primary cause of rabies disease in humans, and it mainly spreads via dog bites in developing countries. Over the course of RABV evolution, multiple RABV variants, called clades, have emerged.
View Article and Find Full Text PDFBiochem J
January 2025
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
The multi-component ring-opening reactions of cyclic ethers offer an efficient strategy for the rapid introduction of multiple functional groups and the construction of complex molecular architectures. Despite the minimal ring strain in five- and six-membered rings presenting a significant challenge for ring-opening, advancements have been made. Traditional acid-catalyzed pathways have been complemented by a novel approach involving carbene-induced oxonium intermediate formation, which has emerged in recent years and expanded the selectivity of ring-opening reactions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is a promising alternative for oxygen evolution reactions. The search for efficient catalysts has been attracting increasing scientific attention. This work explores the performance of nitrogen-doped graphene-supported single-atom catalysts (M-NC SACs) for the reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!