The purpose of this research is to discuss the preparation, characterization, and characteristics of lithium disilicate-fluorcanasite (LF) glass-ceramics in order to develop new dental glass-ceramics. A typical melt quenching method was used to produce the lithium disilicate (LD) and fluorcanasite (FC) types of glass. Following that, the LD and FC glass frits were combined and remelted in the following LD:FC ratios of 100:0, 0:100, 75:25, and 50:50 wt%, represented by S1, S2, S3, and S4, respectively. Based on the thermal analysis data, the glass-ceramic samples were fabricated through the heat treatment method. XRD and SEM were used to characterize the phase formation and microstructures of the prepared glass-ceramics. Archimedes' principle, three-point bending, and chemical solubility tests were used to determine density, flexural strength, and chemical solubility, respectively. The elastic modulus and fracture toughness of the selected samples were also evaluated using a Vickers hardness test. It was found that the S3 glass-ceramic sample (S3-789) has a longer LD crystalline phase than that of the S4 glass-ceramic sample (S4-788), resulting in a higher density and hardness. Furthermore, the S3-789 sample had by far the greatest Vickers hardness, elastic modulus, fracture toughness, and flexural strength, so it was chosen for future study to assess its bioactivity in SBF due to its superior mechanical properties and good machinability. The SBF bioactivity test validated the S3-789 sample's high bioactive performance. As a result, the S3-789 sample may be a good option for use as a novel material in dental applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2022.105548DOI Listing

Publication Analysis

Top Keywords

preparation characterization
8
lithium disilicate-fluorcanasite
8
disilicate-fluorcanasite glass-ceramics
8
dental applications
8
chemical solubility
8
flexural strength
8
elastic modulus
8
modulus fracture
8
fracture toughness
8
vickers hardness
8

Similar Publications

Beyond the Herald Patch: Exploring the Complex Landscape of Pityriasis Rosea.

Am J Clin Dermatol

January 2025

Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.

Pityriasis rosea (PR) is a prevalent dermatological condition characterized by a distinctive herald patch, followed by secondary eruptions, often forming a "Christmas tree" pattern on the trunk. Despite its recognizable clinical presentation, the etiology of PR remains uncertain, with hypotheses pointing to both infectious and noninfectious origins. Human herpesviruses (HHV) 6 and 7 have been implicated, with evidence suggesting viral reactivation as a potential trigger.

View Article and Find Full Text PDF

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Compressive electron backscatter diffraction imaging.

J Microsc

January 2025

Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK.

Electron backscatter diffraction (EBSD) has developed over the last few decades into a valuable crystallographic characterisation method for a wide range of sample types. Despite these advances, issues such as the complexity of sample preparation, relatively slow acquisition, and damage in beam-sensitive samples, still limit the quantity and quality of interpretable data that can be obtained. To mitigate these issues, here we propose a method based on the subsampling of probe positions and subsequent reconstruction of an incomplete data set.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!