Neuroinflammation plays a protective role in the brain; however, in neurological diseases such as epilepsy, overactivated neuroinflammation, along with overexpression of inflammatory mediators, can cause neuronal tissue damage, which can trigger seizures due to loss of ionic or neurotransmitter homeostasis. Therefore, we aimed to evaluate mRNA expression levels of proinflammatory cytokines, early growth response factor 3 (Egr3), and GABA A receptors in the hippocampus of naive audiogenic mutant tremor mice, and stimulated tremor mice after a seizure. Gene expression of Il-1β, Il-6, Tnf-α, Ccl2, Ccl3, Egr3, Gabra1, and Gabra4 from hippocampal samples of naive and stimulated tremor mice were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Relative to resistant mice, Ccl3 gene expression was increased and Il6 was decreased in the hippocampus of naïve tremor mice. Thirty minutes after a seizure, Ccl3 and Il-1β mRNA expression were decreased (p < 0.0001; p = 0.0034, respectively) while Il6 was increased (p = 0.0052) in stimulated tremor mice, relative to naïve animals. In addition, Egr3, Gabra1, and Gabra4 mRNA expression was decreased in the hippocampus of naive tremor mice, relative to resistant mice, which increased 30 minutes after a seizure (p = 0.0496; p = 0.0447, and p = 0.0011, respectively), relative to naïve animals. In conclusion, overexpression of Ccl3 in the hippocampus of naive tremor mice, followed by downregulation soon after seizure in stimulated tremor mice, could be involved in changes in the blood-brain barrier (BBB) permeability in epilepsy. Il-1β may be involved in hippocampal downregulation of GABA A receptors of naive tremor mice, characterizing an important mechanism in audiogenic seizures triggering. Hippocampal alterations of proinflammatory cytokines, Egr3, and GABA A receptors in tremor mice reinforce them as an alternative tool to modeling temporal lobe epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yebeh.2022.108962 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!