Two Binding Sites of SARS-CoV-2 Macrodomain 3 Probed by Oxaprozin and Meclomen.

J Med Chem

Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China.

Published: November 2022

Severe acute respiratory syndrome-coronavirus-1/2 (SARS-CoV-1/2) macrodomain 3 (Mac3) is critical for replication and transcription of the viral genome and is therefore a potential therapeutic target. Here, we solved the crystal structure of SARS-CoV-2 Mac3, which reveals a small-molecule binding pocket. Two low-molecular-weight drugs, oxaprozin and meclomen, induced different patterns of nuclear magnetic resonance (NMR) chemical shift perturbations (CSPs). Meclomen binds to site I of SARS-CoV-2 Mac3 with binding pose determined by NMR CSP and transferred paramagnetic relaxation enhancement, while oxaprozin binds to site II as revealed by the crystal structure. Interestingly, oxaprozin and meclomen both perturb residues in site I of SARS-CoV Mac3. Fluorescence polarization experiments further demonstrated that oxaprozin and meclomen inhibited the binding of DNA-G4s to SARS-CoV-2 Mac3. Our work identified two adjacent ligand-binding sites of SARS-CoV-2 Mac3 that shall facilitate structure-guided fragment linking of these compounds for more potent inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.2c01168DOI Listing

Publication Analysis

Top Keywords

oxaprozin meclomen
16
sars-cov-2 mac3
16
sites sars-cov-2
8
crystal structure
8
binds site
8
mac3
6
sars-cov-2
5
oxaprozin
5
meclomen
5
binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!