Numerous safe and effective coronavirus disease 2019 vaccines have been developed worldwide that use various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S subunit relative to postfusion S as compared with vaccines lacking these mutations or natural infection. Prefusion S and S antibody binding titers positively and equivalently correlated with neutralizing activity, and depletion of S-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S subunit and that variant cross-neutralization is mediated solely by receptor binding domain-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants than current technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765460 | PMC |
http://dx.doi.org/10.1126/sciimmunol.adf1421 | DOI Listing |
Front Immunol
December 2024
Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States.
Introduction: Thymic stromal lymphopoietin (TSLP) is a master regulator of allergic inflammation against pathogens at barrier surfaces of the lung, skin, and gut. However, aberrant TSLP activity is implicated in various allergic, chronic inflammation and autoimmune diseases and cancers. Biologics drugs neutralizing excess TSLP activity represented by tezepelumab have been approved for severe asthma and are being evaluated for the treatments of other TSLP-mediated diseases.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
Rheumatoid arthritis (RA) is a kind of inflammation homeostasis disorder that dysfunctions the joints. Clinically, medications against RA focus simply on mitigating the focal inflammation, without considering pro-osteogenesis re-modeling of the bone microenvironment. In the present work, 2D layered calcium disilicide nanoparticles (CSNs) are fabricated by facile aqueous exfoliation.
View Article and Find Full Text PDFPLoS One
December 2024
Mesa Photonics, Santa Fe, NM, United States of America.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are a continuous threat to human life. An urgent need remains for simple and fast tests that reliably detect active infections with SARS-CoV-2 and its variants in the early stage of infection. Here we introduce a simple and rapid activity-based diagnostic (ABDx) test that identifies SARS-CoV-2 infections by measuring the activity of a viral enzyme, Papain-Like protease (PLpro).
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine, Ishikawa Prefectural Central Hospital, Kanazawa, JPN.
Vaccine
December 2024
Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico. Electronic address:
The development of a protective HIV vaccine remains a challenge given the high antigenic diversity and mutational rate of the virus, which leads to viral escape and establishment of reservoirs in the host. Modern antigen design can guide immune responses towards conserved sites, consensus sequences or normally subdominant epitopes, thus enabling the development of broadly neutralizing antibodies and polyfunctional lymphocyte responses. Conventional epitope vaccines can often be impaired by low immunogenicity, a limitation that may be overcome by using a carrier system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!