Recombinant Vaccinia Virus Expressing Apical Membrane Antigen 1 or Microneme Protein Enhances Protection against Infection in Mice.

Trop Med Infect Dis

Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.

Published: November 2022

Recombinant vaccinia viruses (rVV) are effective antigen delivery vectors and are researched widely as vaccine platforms against numerous diseases. Apical membrane antigen 1 (AMA1) is one of the candidate antigens for malaria vaccines but rising concerns regarding its genetic diversity and polymorphism have necessitated the need to search for an alternative antigen. Here, we compare the efficacies of the rVV vaccines expressing either AMA1 or microneme protein (MIC) of in mice. Mice (BALB/c) were immunized with either rVV-AMA1 or rVV-MIC and subsequently challenge-infected with Compared to the control group, both antigens elicited elevated levels of parasite-specific antibody responses. Immunization with either one of the two vaccines induced high levels of T cells and germinal center B cell responses. Interestingly, rVV-MIC immunization elicited higher levels of cellular immune response compared to rVV-AMA1 immunization, and significantly reduced pro-inflammatory cytokine productions were observed from the former vaccine. While differences in parasitemia and bodyweight changes were negligible between rVV-AMA1 and rVV-MIC immunization groups, prolonged survival was observed for the latter of the two. Based on these results, our findings suggest that the rVV expressing the MIC could be a vaccine-candidate antigen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698705PMC
http://dx.doi.org/10.3390/tropicalmed7110350DOI Listing

Publication Analysis

Top Keywords

recombinant vaccinia
8
apical membrane
8
membrane antigen
8
microneme protein
8
rvv-ama1 rvv-mic
8
rvv-mic immunization
8
antigen
5
vaccinia virus
4
virus expressing
4
expressing apical
4

Similar Publications

Multi-Component Protein Vaccine Induces a Strong and Long-Term Immune Response Against Monkeypox Virus.

Vaccines (Basel)

December 2024

State Key Laboratory of Pathogens and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.

Background/objectives: Since 2022, outbreaks of monkeypox have raised widespread concern and have been declared a public health emergency of international concern by the World Health Organization. There is an urgent need to develop a safe and effective vaccine against the monkeypox virus (MPXV). Recombinant protein vaccines play a significant role in the prevention of infectious diseases due to their high safety and efficacy.

View Article and Find Full Text PDF

: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified vaccinia Ankara (MVA) and isolate CR19, which has significantly expanded inverted terminal repeats (ITRs).

View Article and Find Full Text PDF

Background/objectives: Marburg virus (MARV) is the etiological agent of Marburg Virus Disease (MVD), a rare but severe hemorrhagic fever disease with high case fatality rates in humans. Smaller outbreaks have frequently been reported in countries in Africa over the last few years, and confirmed human cases outside Africa are, so far, exclusively imported by returning travelers. Over the previous years, MARV has also spread to non-endemic African countries, demonstrating its potential to cause epidemics.

View Article and Find Full Text PDF

Nucleocytoplasmic large DNA viruses (NCLDVs) have massive genome and particle sizes compared to other known viruses. NCLDVs, including poxviruses, encode ATPases of the FtsK/HerA superfamily to facilitate genome encapsidation. However, their biochemical and structural characteristics are yet to be discerned.

View Article and Find Full Text PDF

Previously obtained highly immunogenic Env-VLPs ensure overcoming the natural resistance of HIV-1 surface proteins associated with their low level of incorporation and inaccessibility of conserved epitopes to induce neutralizing antibodies. We also adopted this technology to modify Env trimers of the ZM53(T/F) strain to produce Env-VLPs by recombinant vaccinia viruses (rVVs). For VLP production, rVVs expressing Env, Gag-Pol (HIV-1/SIV), and the cowpox virus hr gene, which overcomes the restriction of vaccinia virus replication in CHO cells, were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!