Malaria in Senegal: Recent and Future Changes Based on Bias-Corrected CMIP6 Simulations.

Trop Med Infect Dis

Laboratoire de Physique de l'Atmosphère et de l'Océan-Siméon Fongang, Ecole Supérieure Polytechnique de l'Université Cheikh Anta Diop (UCAD), BP 5085, Dakar-Fann, Dakar 10700, Senegal.

Published: November 2022

Malaria is a constant reminder of the climate change impacts on health. Many studies have investigated the influence of climatic parameters on aspects of malaria transmission. Climate conditions can modulate malaria transmission through increased temperature, which reduces the duration of the parasite's reproductive cycle inside the mosquito. The rainfall intensity and frequency modulate the mosquito population's development intensity. In this study, the Liverpool Malaria Model (LMM) was used to simulate the spatiotemporal variation of malaria incidence in Senegal. The simulations were based on the WATCH Forcing Data applied to ERA-Interim data (WFDEI) used as a point of reference, and the biased-corrected CMIP6 model data, separating historical simulations and future projections for three Shared Socio-economic Pathways scenarios (SSP126, SSP245, and SSP585). Our results highlight a strong increase in temperatures, especially within eastern Senegal under the SSP245 but more notably for the SSP585 scenario. The ability of the LMM model to simulate the seasonality of malaria incidence was assessed for the historical simulations. The model revealed a period of high malaria transmission between September and November with a maximum reached in October, and malaria results for historical and future trends revealed how malaria transmission will change. Results indicate a decrease in malaria incidence in certain regions of the country for the far future and the extreme scenario. This study is important for the planning, prioritization, and implementation of malaria control activities in Senegal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694468PMC
http://dx.doi.org/10.3390/tropicalmed7110345DOI Listing

Publication Analysis

Top Keywords

malaria transmission
16
malaria
12
malaria incidence
12
historical simulations
8
malaria senegal
4
future
4
senegal future
4
future changes
4
changes based
4
based bias-corrected
4

Similar Publications

Large-scale surveillance and informed vector control approaches are urgently needed to ensure that national malaria programs remain effective in reducing transmission and, ultimately, achieving malaria elimination targets. In South America, Anopheles darlingi is the primary malaria vector and is responsible for the majority of Plasmodium species transmission. However, little is known about the molecular markers associated with insecticide resistance in this species.

View Article and Find Full Text PDF

Background: The Lihir Islands of Papua New Guinea, located in an area with high burden of malaria and hosting a large mining operation, offer a unique opportunity to study transmission. There, we investigated human and vector factors influencing malaria transmission.

Methods: In 2019, a cross-sectional study was conducted on 2,914 individuals assessing malaria prevalence through rapid diagnostic tests (RDT), microscopy, and quantitative PCR (qPCR).

View Article and Find Full Text PDF

Factors associated with contracting border malaria: A systematic and meta-analysis.

PLoS One

January 2025

School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa.

Vector resistance, human population movement, and cross-border malaria continue to pose a threat to the attainment of malaria elimination goals. Border malaria is prominent in border regions characterised by poor access to health services, remoteness, and vector abundance. Human socio-economic behaviour, vectoral behaviour, access and use of protective methods, age, sex, and occupation have been identified in non-border regions as key predictors for malaria.

View Article and Find Full Text PDF

Introduction: Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control programs. We previously designed AmpliSeq assays for MMS, which include different traits of interest (resistance markers and deletions), and SNP barcodes to provide population genetics estimates of and parasites in the Peruvian Amazon. The present study compares the genetic resolution of the barcodes in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate population genetics of Amazonian malaria parasites.

View Article and Find Full Text PDF

Genetic control - the deliberate introduction of genetic traits to control a pest or vector population - offers a powerful tool to augment conventional mosquito control tools that have been successful in reducing malaria burden but that are compromised by a range of operational challenges. Self-sustaining genetic control strategies have shown great potential in laboratory settings, but hesitancy due to their invasive and persistent nature may delay their implementation. Here, instead, we describe a self-limiting strategy, designed to have geographically and temporally restricted effect, based on a Y chromosome-linked genome editor (YLE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!