Self-expressiveness based subspace clustering methods have received wide attention for unsupervised learning tasks. However, most existing subspace clustering methods consider data features as a whole and then focus only on one single self-representation. These approaches ignore the intrinsic multi-attribute information embedded in the original data feature and result in one-attribute self-representation. This paper proposes a novel multi-attribute subspace clustering (MASC) model that understands data from multiple attributes. MASC simultaneously learns multiple subspace representations corresponding to each specific attribute by exploiting the intrinsic multi-attribute features drawn from original data. In order to better capture the high-order correlation among multi-attribute representations, we represent them as a tensor in low-rank structure and propose the auto-weighted tensor nuclear norm (AWTNN) as a superior low-rank tensor approximation. Especially, the non-convex AWTNN fully considers the difference between singular values through the implicit and adaptive weights splitting during the AWTNN optimization procedure. We further develop an efficient algorithm to optimize the non-convex and multi-block MASC model and establish the convergence guarantees. A more comprehensive subspace representation can be obtained via aggregating these multi-attribute representations, which can be used to construct a clustering-friendly affinity matrix. Extensive experiments on eight real-world databases reveal that the proposed MASC exhibits superior performance over other subspace clustering methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2022.3220949DOI Listing

Publication Analysis

Top Keywords

subspace clustering
20
clustering methods
12
multi-attribute subspace
8
auto-weighted tensor
8
tensor nuclear
8
nuclear norm
8
intrinsic multi-attribute
8
original data
8
masc model
8
multi-attribute representations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!