Our current study reports the anti-bacterial activity of the gold nanoparticles (AuNps) synthesized by the green synthesis method using Vitex negundo plant leaves. The aqueous extract of Vitex negundo plant leaves are acting as the capping and stabilizing agent in the synthesis of AuNps. It is already evident from earlier studies that Vitex negundo is an abundant source of polyphenols, flavonoids, terpenoids, and many other biologically active compounds. The present study reveals the potential of biologically active compounds from the plant in the reduction reaction of chloroauric acid (HAuCl) into gold nanoparticles. The green synthesis method is adapted instead of the chemical method, which is toxic and more expensive. The gold nanoparticles subjected to characterization with the help of UV-visible spectroscopy, FTIR to determine functional groups, light scattering to estimate size and uniformity, scanning emission microscopy with EDX for accurate size and shape of AuNps, and X-ray diffraction to reveal the crystalline structure. The characteristics of AuNps formed are UV reading at 520 nm, FTIR showing the presence of phenols and alkenes, DLS, SEM, and XRD confirming the spherical shape with the size around 70-90 nm. The anti-bacterial activity of the gold nanoparticles is evaluated against four different species of bacteria, each two gram-positive and gram-negative. The gold nanoparticles formed by Vitex negundo show good anti-bacterial activity against Salmonella typhi and M. luteus bacteria with a zone of inhibition of 6 mm and 2 mm respectively. Furthermore, the cytotoxic activities of the gold nanoparticles are yet to be known to their full extent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-022-04217-8 | DOI Listing |
Biosens Bioelectron
December 2024
Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy. Electronic address:
Lateral flow assays (LFA) are widely adopted in point-of-care diagnostics across a spectrum of applications, due to their simplicity of use and cost-effectiveness. However, in complex biological matrices (e.g.
View Article and Find Full Text PDFBMC Vet Res
December 2024
Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
Strongylus vulgaris, a devastating parasitic nematode in equids, causes life-threatening verminous aneurysms that are challenging to diagnose early. This study pioneered integrating nanotechnology into an indirect enzyme-linked immunosorbent assay (i-ELISA) system to enhance the sensitivity and specificity for detecting S. vulgaris larval antigens in equine serum samples, with PCR confirmation of the species.
View Article and Find Full Text PDFMikrochim Acta
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
A dual-signal aptamer-based assay utilizing colorimetric and fluorescence techniques was developed for the determination of zearalenone (ZEN). The CdTe quantum dots, serving as the fluorescent signal source, were surface-modified onto FeO@SiO and subsequently functionalized with the aptamer. The COF-Au was modified with complementary chain, which possessed peroxide (POD)-like enzyme properties, and could catalyze the peroxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to ox TMB, resulting in the generation of colorimetric signals.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain.
Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the development of a hybrid biosensor platform for the ultrasensitive detection of endoglin, aimed at enabling the early diagnosis of preeclampsia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!