Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The capability of multi-component reactions in rapid immobilization of enzymes was considered for co-immobilization of Thermomyces lanuginous lipase (TLL) and Candida antarctica lipase B (CALB) [TLL: CALB]; Rhizomucor miehei lipase (RML) and CALB [RML: CALB] on amine-functionalized silica-coated magnetic nanoparticles (FeO@SiO-NH). Immobilization of different ratios of lipases was performed within 3 h under mild conditions; producing specific activity ranging from 29 to 35 U/mg for TLL:CALB and 21-34 U/mg for RML:CALB. The co-immobilized derivatives showed improved co-solvent and thermal stability compared to the corresponding free enzymes. All the derivatives were also used to catalyze the transesterification of waste cooking oil with methanol to produce biodiesel (fatty acid methyl esters). Response surface method (RSM) and a central composite rotatable design (CCRD) were used to study the effects of different factors on the FAME yield. FeO@SiO-NH-RML-CALB and FeO@SiO-NH-TLL-CALB had maximum FAME yields of 99-80%, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-022-02808-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!