Gestational diabetes mellitus (GDM), a common perinatal disease, is related to increased risks of maternal and neonatal adverse perinatal outcomes. We aimed to establish GDM risk prediction models that can be widely used in the first trimester using four different methods, including a score-scaled model derived from a meta-analysis using 42 studies, a logistic regression model, and two machine learning models (decision tree and random forest algorithms). The score-scaled model (seven variables) was established via a meta-analysis and a stratified cohort of 1075 Chinese pregnant women from the Northwest Women's and Children's Hospital (NWCH) and showed an area under the curve (AUC) of 0.772. The logistic regression model (seven variables) was established and validated using the above cohort and showed AUCs of 0.799 and 0.834 for the training and validation sets, respectively. Another two models were established using the decision tree (DT) and random forest (RF) algorithms and showed corresponding AUCs of 0.825 and 0.823 for the training set, and 0.816 and 0.827 for the validation set. The validation of the developed models suggested good performance in a cohort derived from another period. The score-scaled GDM prediction model, the logistic regression GDM prediction model, and the two machine learning GDM prediction models could be employed to identify pregnant women with a high risk of GDM using common clinical indicators, and interventions can be sought promptly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697464PMC
http://dx.doi.org/10.3390/metabo12111040DOI Listing

Publication Analysis

Top Keywords

prediction models
12
logistic regression
12
gdm prediction
12
risk prediction
8
gestational diabetes
8
diabetes mellitus
8
gdm common
8
score-scaled model
8
regression model
8
model machine
8

Similar Publications

Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.

Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.

View Article and Find Full Text PDF

A Nomogram utilizing ECG P-wave parameters to predict recurrence risk following catheter ablation in paroxysmal atrial fibrillation.

J Cardiothorac Surg

January 2025

Department of Cardiology, Fujian Medical University Union Hospital, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Clinical Medical Research Center for Heart and Macrovascular Disease, Fuzhou, 350001, China.

Objective: The objective of this study is to assess the predictive utility of perioperative P-wave parameters in patients with paroxysmal atrial fibrillation (PAF) undergoing catheter ablation, and to develop a predictive model using these parameters.

Methods: A total of 213 patients with PAF undergoing catheter ablation were retrospectively analyzed. P-wave parameters were measured within 3 days preoperatively and on the day postoperatively to determine their predictive significance for postoperative PAF recurrence.

View Article and Find Full Text PDF

Background: Stroke has emerged as an escalating public health challenge among middle-aged and older individuals in China, closely linked to glycolipid metabolic abnormalities. The Hemoglobin A1c/High-Density Lipoprotein Cholesterol (HbA1c/HDL-C) ratio, an integrated marker of glycolipid homeostasis, may serve as a novel predictor of stroke risk.

Methods: Our investigation utilized data from the China Health and Retirement Longitudinal Study cohort (2011-2018).

View Article and Find Full Text PDF

Background: The clinical manifestations and course of rheumatoid arthritis-associated interstitial lung disease (RA-ILD) exhibits considerable heterogeneity. In this study, we aimed to explore radiographic progression over a defined period, employing the Warrick score as a semi-quantitative measure in early RA-ILD, and to assess the associated risk factors for progression.

Methods: RA-ILD patients underwent consecutive Warrick scoring based on initial high-resolution computed tomography (HRCT) at diagnosis and the first follow-up.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!