Recent studies have shown that the reconstituted cell-free DNA replisome and in vitro transcription and translation systems from Escherichia coli are highly important in applied and synthetic biology. To date, no attempt has been made to combine those two systems. Here, we study the performance of the mixed two separately exploited systems commercially available as RCR and PURE systems. Regarding the genetic information flow from DNA to proteins, mixtures with various ratios of RCR/PURE gave low protein expression, possibly due to the well-known conflict between replication and transcription or inappropriate buffer conditions. To further increase the compatibility of the two systems, rationally designed reaction buffers with a lower concentration of nucleoside triphosphates in 50 mM HEPES (pH7.6) were evaluated, showing increased performance from RCR/PURE (85%/15%) in a time-dependent manner. The compatibility was also validated in compartmentalized cell-sized droplets encapsulating the same RCR/PURE soup. Our findings can help to better fine-tune the reaction conditions of RCR-PURE systems and provide new avenues for rewiring the central dogma of molecular biology as self-sustaining systems in synthetic cell models. KEY POINTS: • Commercial reconstituted DNA amplification (RCR) and transcription and translation (PURE) systems hamper each other upon mixing. • A newly optimized buffer with a low bias for PURE was formulated in the RCR-PURE mixture. • The performance and dynamics of RCR-PURE were investigated in either bulk or compartmentalized droplets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-022-12278-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!