Carbon Source Influences Antioxidant, Antiglycemic, and Antilipidemic Activities of Carotenoid Extracts.

Mar Drugs

Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.

Published: October 2022

Haloarchaeal carotenoids have attracted attention lately due to their potential antioxidant activity. This work studies the effect of different concentrations of carbon sources on cell growth and carotenoid production. Carotenoid extract composition was characterized by HPLC-MS. Antioxidant activity of carotenoid extracts obtained from cell cultures grown under different nutritional conditions was determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Ability Power (FRAP) and β-carotene bleaching assays. The ability of these carotenoid extracts to inhibit α-glucosidase, α-amylase, and lipase enzymes was also assessed to determine if they could be used to reduce blood glucose and lipid absorption. The maximum production of carotenoids (92.2 µg/mL) was observed combining 12.5% inorganic salts and 2.5% of glucose/starch. Antioxidant, hypoglycemic, and antilipidemic studies showed that higher carbon availability in the culture media leads to changes in the extract composition, resulting in more active haloarchaeal carotenoid extracts. Carotenoid extracts obtained from high-carbon-availability cell cultures presented higher proportions of all--bacterioruberin, 5--bacterioruberin, and a double isomeric bacterioruberin, whereas the presence 9--bacterioruberin and 13--bacterioruberin decreased. The production of haloarchaeal carotenoids can be successfully optimized by changing nutritional conditions. Furthermore, carotenoid composition can be altered by modifying carbon source concentration. These natural compounds are very promising in food and nutraceutical industries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697119PMC
http://dx.doi.org/10.3390/md20110659DOI Listing

Publication Analysis

Top Keywords

carotenoid extracts
20
carbon source
8
carotenoid
8
haloarchaeal carotenoids
8
antioxidant activity
8
extract composition
8
cell cultures
8
nutritional conditions
8
extracts
5
carbon
4

Similar Publications

UPLC-PDA-ESI-MS based chemometric analysis for solvent polarity effect evaluation on phytochemical compounds and antioxidant activity in habanero pepper (Capsicum chinense Jacq) fruit extract.

J Food Sci

December 2024

Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico.

The effect of solvents with different polarities on the recovery of phytochemicals (carotenoids, capsaicinoids, and phenolic compounds) from habanero pepper (Capsicum chinense) and their association with antioxidant activity (ABTS and DPPH) was evaluated through Ultra-Performance-Liquid Chromatography coupled with a Photodiode Array Detector and a Electrospray Ionization Mass Spectrometry (UPLC-PDA-ESI-MS)-based chemometric analysis, including linear correlation, multiple linear regression, and principal component analysis (PCA). The solvent polarity scale was established according to solvent dielectric constants (ɛ). Color variation (ΔE) was used to determine the presence of carotenoids, with the highest ΔE obtained using low-polarity solvents (hexane and ethyl acetate).

View Article and Find Full Text PDF

Marine animals, especially shrimp species, have gained interest in research, due to the fact that they contain a plethora of biomolecules, specifically lipids, which have been proven to possess many health benefits in various diseases linked to chronic inflammation or other exogenous factors. This review refers to the lipid composition of a large number of shrimp species, as well as the effects that can alternate the lipid content of these crustaceans. Emphasis is given to the potent anti-inflammatory, antioxidant, and antithrombotic properties of shrimp bioactives, as well as the effects that these bioactives hold in other diseases, such as cancer, diabetes, neurodegenerative disorders, and more.

View Article and Find Full Text PDF

Revealing the Potential of Linnaeus for Cosmetic Purposes: Chemical Profile and Biological Activities of Commercial and Wild Samples.

Mar Drugs

December 2024

Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.

The natural products industry is gaining increasing interest, not only due to modern lifestyles becoming more aware of environmental and sustainability issues but also because of the loss of efficacy and undesirable side effects of synthetic ingredients. This pioneering study provides a comprehensive comparison between extracts obtained from wild and commercial samples of Linnaeus, highlighting their multifaceted benefits in cosmetic applications. The antiaging potential of acetone (70 and 90%) and ethanol 60% extracts from wild and commercial samples of , focusing on their application in cosmetics, was explored.

View Article and Find Full Text PDF

Bananas and plantains are important staple food crops affected by biotic and abiotic stresses. The gene editing technique via Clustered Regularly Interspaced Short Palindromic Repeats associated with the Cas protein (CRISPR/Cas) has been used as an important tool for development of cultivars with high tolerance to stresses. This study sought to develop a protocol for the construction of vectors for gene knockout.

View Article and Find Full Text PDF

Oral administration of astaxanthin mitigates chronological skin aging in mice.

Biosci Biotechnol Biochem

December 2024

Graduate School of Agriculture, Kyoto University, Kyoto, Japan.

Intrinsic skin aging is a chronological decline in skin texture and function influenced largely by genetic factors. Aged skin exhibits morphological alterations, including wrinkling, dryness, and roughness, along with dysfunctional changes in the skin barrier. In this study, the in vivo anti-intrinsic aging efficacy of dietary astaxanthin extracted from Haematococcus pluvialis on the skin was evaluated using aged C57BL/6 J mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!